
I

Real-Life BPMN
4th edition

II

III

Jakob Freund
Bernd Rücker

Real-Life BPMN
4th edition

Using BPMN and DMN to analyze, improve,
and automate processes in your company

IV

Jakob Freund, Bernd Rücker
Founders of Camunda
www.camunda.com

This fourth edition in English is based on the successful sixth German edition.
Also available in Spanish.

Editing for the English-language edition of this book was provided by James Venis of
Lakewood, Colorado, USA, with assistance from Kristen Hannum (1st edition), Jalynn
Venis (2nd edition) and James Simmonds (3rd edition).
www.jvenis.net

Copyright 2019 Jakob Freund and Bernd Rücker.
All rights reserved.
ISBN-13: 9781086302097

Contents

Preface . XI

1 Introduction . 1
1.1 Business process management . 1

1.1.1 Definition . 1

1.1.2 BPM in practice . 2

1.1.3 Camunda BPM life cycle . 2

1.1.4 Process automation. 5

1.2 The BPM standards. 6

1.2.1 Workflows with BPMN .. 6

1.2.2 DMN for rule-based decisions . 7

1.2.3 Structured vs. unstructured workflows . 8

1.3 First example . 10

1.4 Can BPMN bridge the gap? . 13

1.4.1 The dilemma.. 13

1.4.2 The customers of a process model . 14

1.5 A method framework for BPMN .. 16

1.5.1 The Camunda house. 16

1.5.2 The great misunderstanding . 17

1.6 Domains, boundaries and the risk of BPMN monoliths . 19

2 The notation in detail. 23
2.1 Understanding BPMN .. 23

2.1.1 Things BPMN does not do . 23

2.1.2 A map: The basic elements of BPMN.. 24

2.1.3 Perspectives in process analysis . 25

2.1.4 Models, instances, tokens, and correlations. 26

2.1.5 Symbols and attributes . 26

VI

2.2 Simple tasks and none events. 27

2.3 Design process paths with gateways . 28

2.3.1 Data-based exclusive gateway. 28

2.3.2 Parallel gateway . 30

2.3.3 Data-based inclusive gateway . 33

2.3.4 Default flow and getting stuck. 36

2.3.5 Complex gateway . 36

2.4 Design process paths without gateways . 38

2.5 Lanes . 40

2.6 Events . 43

2.6.1 Relevance in BPMN .. 43

2.6.2 Message events . 47

2.6.3 Timer events . 49

2.6.4 Error events . 51

2.6.5 Conditional . 51

2.6.6 Signal events . 52

2.6.7 Terminate events . 53

2.6.8 Link events . 54

2.6.9 Compensation events . 54

2.6.10 Multiple events . 56

2.6.11 Parallel events . 57

2.6.12 Escalation events . 58

2.6.13 Cancel events . 58

2.6.14 Event-based gateway . 58

2.6.15 Event-based parallel gateway . 61

2.7 Special tasks . 61

2.7.1 Typification . 61

2.7.2 Markers . 63

2.7.3 Global tasks and call activity . 66

2.8 Subprocesses . 66

2.8.1 Encapsulate complexity . 66

2.8.2 Modularization and reuse . 69

2.8.3 Attached events . 71

2.8.4 Markers . 73

2.8.5 Transactions . 74

2.8.6 Event subprocesses . 75

2.9 Pools and message flows. 78

2.9.1 The conductor and the orchestra . 78

VII

2.9.2 Rules for application. 80

2.9.3 The art of collaboration . 81

2.9.4 Collapse pools . 83

2.9.5 Multiple instance pools . 84

2.10 Data. 85

2.11 Artifacts . 87

2.11.1 Annotations and groups . 87

2.11.2 Custom artifacts . 88

2.12 Comparison with other notations . 88

2.12.1 Extended event-driven process chain (eEPC) . 89

2.12.2 UML activity diagram .. 89

2.12.3 ibo sequence plan. 91

2.12.4 Key figures and probabilities . 91

2.13 Choreographies and conversations . 94

3 Strategic process models . 97
3.1 About this chapter . 97

3.1.1 Purpose and benefit . 97

3.1.2 Model requirements . 98

3.1.3 Procedure . 99

3.2 Case example: Recruiting process . 101

3.3 Restricting the symbol set . 102

3.3.1 Pools and lanes . 102

3.3.2 Tasks and subprocesses . 105

3.3.3 Gateways . 106

3.3.4 Events and event-based gateway . 106

3.3.5 Data and artifacts . 109

3.3.6 Custom artifacts . 110

3.3.7 Hide and reveal symbols . 111

3.4 Process analysis on the strategic level . 112

3.5 Conversations and choreographies . 114

4 Operational process models . 117
4.1 About this chapter . 117

4.1.1 Purpose and benefit . 117

4.1.2 Model requirements . 118

4.1.3 Procedure . 118

4.2 From the strategic level to the operational level. 120

4.3 Processes of the participants . 122

VIII

4.4 Preparing for process automation. 125

4.4.1 Designing for support by a workflow engine . 125

4.4.2 Required processes of the workflow engine . 127

4.4.3 Further requirements. 129

4.4.4 Technical implementation beyond the workflow engine. 130

4.4.5 Technical implementation without workflow engine . 132

4.5 Hands-on tips for the operational level. 134

4.5.1 From the happy path to the bitter truth. 134

4.5.2 The true benefit of subprocesses . 139

4.5.3 Slice processes according to your domain boundaries . 140

4.5.4 The limits of formalization . 141

4.5.5 Flexibility in BPMN models. 142

4.5.6 Taking business decisions out of processes . 144

5 DMN - Introduction and overview. 149
5.1 Understanding DMN .. 149

5.2 Notation elements . 151

5.2.1 Decision tables . 151

5.2.2 Expressions in decision tables. 153

5.2.3 Hit policy . 156

5.2.4 Advanced FEEL . 159

5.2.5 Decision requirements . 162

5.3 Practical tips . 163

5.3.1 Linking BPMN and DMN .. 163

5.3.2 Decisions with a decision flow .. 164

5.3.3 The life cycle of decisions . 167

6 Workflow Automation . 169
6.1 Purpose and benefit . 169

6.2 Basics . 170

6.2.1 Model execution with workflow and decision engines . 170

6.2.2 Executing the BPMN and DMN standards . 172

6.2.3 Alternative automation languages . 172

6.2.4 When is it worth using a workflow engine? . 173

6.2.5 When is it worth using a decision engine? . 174

6.2.6 Workflow and decision engines in interaction . 175

6.3 Automating technical process flows . 176

6.3.1 Model requirements . 176

6.3.2 Procedure . 177

IX

6.3.3 The executable process model . 178

6.4 Practical tips . 180

6.4.1 Embedded and decentralized workflow engines . 180

6.4.2 The low-code trap . 181

6.4.3 The myth of engine interchangeability . 183

6.4.4 Modeling or programming. 184

6.4.5 Overcoming technical challenges . 185

6.4.6 Acceptance criteria when introducing a BPM platform .. 187

7 Introducing BPMN on a broad base . 191
7.1 Goals. 191

7.2 Roles . 193

7.2.1 Of gurus, followers, and unbelievers . 193

7.2.2 Anchoring in the organization . 194

7.2.3 Training of BPMN gurus . 195

7.3 Methods. 196

7.3.1 Range of symbols. 197

7.3.2 Naming conventions . 198

7.3.3 Layout . 199

7.3.4 Modeling alternatives . 199

7.3.5 Design patterns. 200

7.4 Tools . 202

7.4.1 Definition of your own BPM stack . 202

7.4.2 The BPMN modeling tool . 204

7.4.3 Camunda BPM: An open source BPM platform .. 204

7.4.4 It can’t always be software . 205

7.5 Meta-processes . 208

8 Tips to get started . 211
8.1 Develop your own style . 211

8.2 Find fellow sufferers . 212

8.3 Get started . 212

Bibliography . 213

Preface

Preface to the 4th edition
We are excited to present a new edition of this book after roughly two years. A lot has
happened in this short time frame. For example, our company Camunda is extremely suc-
cessful, and we not only have thousands of customers working with BPMN, but we also
deliver the most successful open source BPM platform on the market, used by hundreds
of well-known companies worldwide, including Allianz, NASA, Santander, 24 Hour Fitness,
T-Mobile and Zalando.

As a result, we can validate our methodologies, ideas and hypotheses professionally, with a
constantly growing number of users. In short: We learn learn more about process automa-
tion every day. And a great team of employees provides a steady stream of innovation and
ideas, that we would never have by ourselves.

In this edition, we have included the two most important lessons of the past two years:

■ We have gained practical experience with the CMMN standard. We just introduced
CMMN in the last edition of this book. We hoped that CMMN could model and auto-
mate unstructured case processing. Unfortunately this did not materialize in real-life, so
we removed CMMN again in this edition. You can read more about this in section 1.2.3
on page 8. In exchange we added section 4.5.5 on page 142, where we discuss patterns
for flexibility in BPMN.

■ There is currently a clear trend in IT towards microservices, which means that you cut
functionality into smaller pieces, that can be developed and maintained autonomously
by potentially different teams. Why do we reflect on this in a book about BPMN? Well,
you need to be careful not to violate microservices principles when modeling end-to-
end processes, and you should be especially cautious about creating BPMN monoliths.
In section 1.6 on page 19 you will find an introduction into the whole topic and how it af-
fects process modeling. In section 4.5.3 on page 140 we discuss how operational process
models need to respect the system boundaries of the microservices, and in section 6.4.1
on page 180 we explain why workflow engines are an implementation detail of a single
microservice, that should probably be operated decentralized.

Now let’s get started —and have fun!

Jakob Freund and Bernd Rücker
June 2019

XII Preface

Preface to the 3rd edition
Well – a lot has happened...

This succinct statement was actually only supposed to be a placeholder for the preface that
we still had to write. But it is actually a perfect summary:

■ BPMN has now firmly been established and was "honored" with an ISO standard in 2013.

■ In March 2014, OMG, the institution which developed BPMN, adopted their new CMMN
standard which is a very good complement to BPMN for representing unstructured busi-
ness processes.

■ In September 2015, the very same OMG performed yet another feat by adopting the
DMN standard which deals with modeling and automating decisions and is also an ex-
cellent complement to BPMN.

This is reason enough to publish the third edition of our practical guide in order to provide
a compact description of both of these latest additions. We have already integrated both
CMMN and DMN into our own software product Camunda BPM and have thus created the
technological basis for using all three standards individually or in combination. This has
already occurred several times and therefore, seven years after first putting our practical
experience with BPMN to paper, we are now able to share our first practical experiences of
CMMN and DMN with you.

In addition to this, we have included several selective updates and improvements. The
chapter on automation in particular has been completely revised as we have now come
to understand so much better what information is relevant to this book through countless
practical projects. To make space for new content we have deleted all examples related to
BPMN-XML since nobody ever read them anyway.

And we have renamed two terms:

In previous editions we called a software that was able to technically execute BPMN models
a process engine. In this edition you will note that we instead use the term workflow engine.
Here we are acknowledging that BPMN is an instrument which is very well suited to model-
ing and automating clearly structured processes. It is however less suited to unstructured
processes which cannot always be described as an unambiguous process diagram. Such
unstructured processes are however understood by us as being business processes which
we will deal with in order to move our company forward. This is why we no longer speak of
a process engine when we mean the execution of structured processes but instead refer to
a workflow engine.

We have also done away with the term rule engine. As mentioned above, there is now the
DMN standard and the D stands for Decision. This reveals a shift in paradigm which we
deem to be very useful. Ask yourself the following question: Is it more important to you to
stick to the rules or to take the right decisions? Well there you go.

Of course it may be necessary to stick to rules and this therefore also determines certain
decisions. But focusing on the idea of taking the right decision is in our opinion a better
idea. On the technical level as well, a decision engine, i.e. software which executes the
decision models, may work differently to a rule engine. We believe that the future belongs to
Business Decision Management and that both at business and technical levels the methods,
standards and technologies that go along with it are a wiser choice.

Preface XIII

Finally, we were not able to resist the temptation of patting ourselves on the back: When
we wrote the first version of this book in 2009 we also explored the limits of BPMN. We re-
alized that BPMN was less suitable for unstructured activities, and that here solutions in
the area of case management would be necessary. We furthermore foresaw that the combi-
nation of BPMN with the topic of business rules represented one of the greatest potentials
for business process management as a whole. Seven years down the line there is now a
CMMN standard for case management and a DMN standard which in our view represents
an improvement of the business rule approach. Both of these standards are designed to be
combined with BPMN, and therefore we were able to take the same passages which pre-
viously referred to the limits of BPMN and complete them by adding these new solution
approaches.

So there you have it.

We would now as always like to wish you great success in working with BPMN, CMMN and
DMN, and of course we hope you enjoy reading this book!

Jakob Freund and Bernd Rücker
November 2016

Preface to the 2nd edition
"Ah, here are Mr. Freund and Mr. Rücker. Gentlemen, it’s a pleasure to finally meet you!
You know, I’m a real fan of your book. I especially like your method framework —it helped
us a lot."

"We’re glad to hear it, though we’ve changed that section in the new edition."

"Really? That’s a shame. I liked the pyramid."

"It’s a house now."

"Okay, that’s reasonable. Every house has a basement —that’s where we keep the IT De-
partment. Meanwhile, up at the top, that’s where you’ll find me. I have a great view and,
after all, I am the boss here!"

"Well, that’s not really what we had in mind. Instead..."

"Hogwash! Anyhow, why the change?"

"Because the pyramid sometimes led to misunderstandings. For example, some people
thought that executable process models always were refined versions of their operational
process models."

"But that’s exactly what they are! This is how our projects work, you see: The Business De-
partment, guided by management, of course, creates an operational process model. That’s
the specification we send down to the basement —I mean, to the IT Department. They
make it executable. It’s easy for them; they just need to refine the operational model to
make it executable!"

"So tell us, how well do these projects work?"

"Well, of course there are problems here and there, misunderstandings, delays, and so on.
But that’s just the way it is with IT. You just have to keep the pressure on!"

XIV Preface

"What you’re describing is one of the more inept approaches. That’s why we changed from
the pyramid to the house."

"Well excuse me! Do you have any other better ideas?"

"We do, actually. You’ll find them in section 1.5.1 on page 16 of this new edition."

"Very well, I’ll take a look at that. Any other news?"

"Sure. We’ve corrected a few mistakes, applied some improvements, and we’ve updated
many topics to make them more current."

"More current topics? Can you give an example?"

"Among other things, we re-evaluated the relevance of the BPEL standard."

"The what?"

"Exactly."

"Is there any news about BPMN software tools?"

"Thank you for that question! Since the last edition, we have become a BPMN tool ven-
dor. In section 7.4.2 on page 204, we describe the Camunda BPM platform and our latest
project: bpmn.io."

"Excuse me, are you really advertising your software here? Is that even legal? I’m disgusted!"

"But it helps to describe it all with a specific example. Otherwise, it just remains abstract
theory. Besides, Camunda BPM and bpmn.io are open-source projects."

"Oh, so I don’t have to pay for it? Like free beer? That’s great!"

"Well, that’s not entirely how open source works..."

"Pah, you and your preaching again! Instead of listening to your rambling, I’ll go read your
book. At least that won’t contradict me the whole time!"

"Enjoy!"

Jakob Freund and Bernd Rücker
September 2014

Preface to the 1st edition
This is a book about Business Process Management (BPM) and Business Process Model and
Notation (BPMN). Truth be told, there are several BPMN books on the market, and some of
them are quite good. So why should you care about this one?

This book distills the BPMN project experience that we have accumulated while running
Camunda, our consulting company in Berlin, Germany. Our firm specializes in BPM. Dur-
ing the past five years, we have applied BPMN in practically every one of more than 250
customer engagements. These were big businesses, small companies, and public institu-
tions.

In 2009, we published the first edition of our "BPMN Hands-On Guide." According to Ama-
zon.de, it is still the highest-ranked book on BPMN in German. We are honored by the
number of five-star-ratings that readers have awarded that book. And if you read their
reviews, you see that what they like best about it are the real-life examples and the vivid

Preface XV

language. (Most German books on this topic suffer from being abstract, and the writing is
uninspired.)

We joined the Object Management Group (OMG) in 2009, and we helped to finalize BPMN
2.0. We also contributed chapters to the BPMN 2.0 by Example tutorial that the OMG pro-
vides to beginners. These interactions showed us that, even outside of Germany, few peo-
ple have applied BPMN as often, as deeply, or as broadly as have we. We decided to trans-
late our book into English, and we gave it a cooler-sounding title than Hands-On Guide.

We hope you’ll enjoy reading this book. Even more, we hope that you will find lots of help
in it —great examples, meaningful tips and suggestions, and patterns that can lead you to
solutions for your own real-life BPMN challenges.

You hear people bashing BPMN once in a while with arguments that are more or less point-
less. You also hear valid critiques and useful suggestions. The good news is that we have a
global community of people driving BPM generally and BPMN in particular, and we thank
every one of them for contributing to a standard that, while not perfect, is definitely a big
step in the right direction.

Our special thanks goes to Bruce Silver, whose own book, BPMN Method & Style, is one
of those quite good BPMN books on the market, and to James Venis, our editor for this
English-language version. If you enjoy reading it, most of your praise should go to him.

Jakob Freund and Bernd Rücker
October 2012

1 Introduction

1.1 Business process management
This book is about Business Process Model and Notation (BPMN 2.0). To understand why
BPMN was invented, it is helpful to gain some understanding of business process manage-
ment (BPM).

1.1.1 Definition

Experts use different definitions for business process management. We use the definition
given by the European Association of BPM (EABPM) in its reference work, BPM Common
Body of Knowledge [Eur09]:

Business process management (BPM) is a systemic approach for capturing, de-
signing, executing, documenting, measuring, monitoring, and controlling both au-
tomated and non-automated processes to meet the objectives and business strate-
gies of a company. BPM embraces the conscious, comprehensive, and increasingly
technology-enabled definition, improvement, innovation, and maintenance of end-
to-end processes. Through this systemic and conscious management of processes,
companies achieve better results faster and more flexibly.

Through BPM, processes can be aligned with the business strategy, and so help to
improve company performance as a whole thanks to the optimization of processes
within business divisions or even beyond company borders.

What end-to-end process really means is from start to finish. The goal is to understand
and thus to assess and improve an entire process —not just its components. We find the
EABPM’s definition helpful because it treats automated and non-automated processes as
both equally important and equally subject to the power of BPM. This understanding is
essential to applying BPM successfully because it is rarely sufficient to improve only orga-
nizational procedures or the supporting technologies; most often we must improve both
the procedures and the technology cooperatively.

2 1 Introduction

1.1.2 BPM in practice

As consultants who specialize in BPM, our new projects almost always involve one of the
following three scenarios:

1. The client wants to improve a process using Information Technology (IT).

2. The client wants current processes documented.

3. The client wants to introduce entirely new processes.

A vast majority of the time, we encounter the first scenario: the client seeks to improve a
process with IT. The motivation often is a desire to improve efficiency, for example, to use
software to eliminate manual keying or re-keying of data. A client may want to implement
IT-based monitoring and analysis of routine processes based on key performance indica-
tors (KPIs).

The second scenario, documenting processes, usually comes about because the client
needs the documentation to guide the work of the people involved. Another rationale is
that the documentation is mandated by regulation or required to obtain certification such
as ISO 9000.

The third scenario happens least often. We find that when companies want to introduce
entirely new processes, it is usually because they are being forced to adapt to changed mar-
ket conditions, develop new channels of distribution, or introduce new products.

In public announcements companies may speak in generalities: they have an interest in
exploring BPM or they want to increase their process orientation. In practice, especially in
large organizations, the argument for BPM is usually well-defined and specific, but it can
take two forms:

1. There is an acute reason for using BPM. The project concerns essential processes that
need to be created, improved, or documented.

2. The reason for BPM is strategic. There will be no direct or immediate benefit, and the
project likely was initiated by some manager trying to advance his or her career.

As you can imagine, serious people don’t greet the second argument with enthusiasm. It
is our own experience, however, which makes us advocate for this view strongly: BPM,
process management, or whatever you want to call it, is not an end in itself.

We always recommend introducing BPM in steps. Each step should yield a practical, mea-
surable benefit that justifies the time and effort that it took to accomplish. Once the justi-
fication of the first step is established, take the next step. You may think that this approach
produces solutions isolated from each other, but what we mean to emphasize here is the
controlled nature of the approach. Each step contributes to the big picture: the company’s
process orientation. A hiker may use a map and a compass to guide his or her steps. Like-
wise, when you introduce BPM, you should use a good procedure model and common
sense as your guides.

1.1.3 Camunda BPM life cycle

Procedure models always seem to be either too simple or too complex. The overly-simple
ones contain only the most painfully obvious elements. They may be useful for market-
ing presentations, but not much else. On the other hand, overly complex models work so

1.1 Business process management 3

Process survey Process
documentation

Process
conception

Process
implementation

Process
controlling

Process
analysis

Existing
process

New process

Yes

No

Weak points?

Current state
process model

Target state
process model

Current state
process
model

BPM governance

Continuous until process
improvement is required

Workshops, interviews,
monitoring

Modeling, process maps,
flow diagrams

Change management,
conventional IT projects,
process automation

Modeling target state design,
process simulation, assessment
of alternatives, ROI estimate

Diagnose problems,
search for causes,
estimate potential

Process
Design

FIGURE 1.1 The Camunda BPM life cycle.

hard at anticipating every contingency that they trap the user like a fly in amber. They are
unrealistically rigid. Still, without a model, we wouldn’t have our map to orient ourselves.

After examining the simple BPM life cycle, which is the most well-established BPM pro-
cedure model, we refined it according to our experience. We wanted to create a relatively
lightweight model without too many restrictions. We thought this would be more prac-
tical than the brightly colored marketing materials we see so often at conferences and in
meetings. We call ours the Camunda BPM life cycle. See it in figure 1.1.

We intend the Camunda BPM life cycle to describe one process at a time. Any process can
run through the life cycle independently of any other process, and the process can be at a
different stage each time it repeats. The cycle triggers when one of the following situations
arises:

■ An existing process is to be documented or improved.

■ A new process is to be introduced.

We have to start by examining an existing process. The process discovery clearly differen-
tiates the subject process from other processes both upstream and downstream. The dis-
covery reveals the output generated by the subject process as well as the importance of that
output for the client. We use e.g. workshops or one-on-one interviews to identify not only
what needs to be accomplished, but also who needs to be involved, and which IT systems.

We document the findings from the process discovery in a current state process model.
This process documentation may include many different charts and descriptions; it usu-
ally has multiple flow charts. A systematic examination of the current state process clearly
identifies weak points and their causes.

We conduct process analysis either because first-time documentation or continuous pro-
cess control has revealed a weakness of a process that cannot be remedied easily.

The causes of weak points identified by a process analysis become the starting point for
another process design. If necessary, different process designs can be evaluated by means of

4 1 Introduction

the process simulation. We also conduct a process design when introducing a new process.
The result in either case is a target state process model.

In reality, we normally want to implement the target state process model as a change in
business or organizational procedures as well as an IT project. Change management, es-
pecially process communication, plays a decisive role in successful organizational change.
For the IT implementation, the process can be automated or software can be developed,
adapted, or procured. The result of the process implementation is a current state process
corresponding to the target state process model that, conveniently, has already been doc-
umented.

In most cases, we find all the stages from process discovery to process implementation
to be necessary. Because process monitoring takes place continuously, however, it reveals
more about the ongoing operation of the process.

The most important tasks of process control are the continuous monitoring of individual
process instances and the analysis of key data so that weak points can be recognized as
quickly as possible. Problems with individual entities require direct remedies, and so do
structural problems if that’s possible. If necessary, the current state process model has to
be adjusted.

If the structural causes of the problems are unclear or complex, this calls for an improve-
ment project that —once again —starts with a systematic process analysis of the weak
points. The decision to initiate such a project lies with the process owner and anyone else
who depends on the process. It is common to regard continuous process control as some-
thing that follows process implementation, though it may be better to have it follow the
initial documentation. This is especially true when doubt exists about the necessity of the
improvement.

Given the importance of the process model within the BPM life cycle, you can imagine the
importance of a modeling standard such as BPMN. Yet you may also notice that process
modeling is not a stage in the Camunda BPM life cycle. That’s because process modeling is
a method that affects all stages, especially process documentation and process design. As
consultants, we constantly encounter people who try to insert process modeling as a stage
at the same level as current state documentation. We think that’s a misconception.

The BPM life cycle describes a simple way to achieve continuous improvement. Applying
it requires coordination of the triad: The responsible parties, the applied methods, and the
supporting software tools. Getting the triad moving toward a common goal is the task of
BPM governance, which has authority over all processes and all BPM projects in an organi-
zation.

The EABPM’s definition of BPM used the term process automation, and we’ve also used
that term in describing the Camunda BPM life cycle. BPMN was developed to automate
processes better. Even if you are not an IT expert, you need to understand what process
automation means because it will help you to grasp how BPMN builds bridges between
business and technology.

1.1 Business process management 5

1.1.4 Process automation

Here’s a simple process: A potential bank customer mails a paper credit application, which
ends up on the desk of a bank accountant. The accountant examines the application, then
checks the potential customer’s creditworthiness through the web site of a credit rating
agency. The results are positive, so the accountant records the application in a special soft-
ware —let’s call it BankSoft —and then forwards the documents to a manager for approval.

Here’s the same process automated: A potential bank customer mails a paper credit appli-
cation. At the bank, a clerk scans the application into electronic form. Software known as
a workflow engine takes over the document and routes it to the bank accountant’s virtual
task list. The accountant accesses the task list, perhaps through the bank’s web site or an
email program like Microsoft Outlook, examines the application on screen, then clicks a
button. The workflow engine accesses the credit rating agency, transfers the pertinent de-
tails, and receives the report. Since the report is positive, the engine passes the information
to BankSoft, and it creates an approval task in the manager’s task list.

Whether this example represents optimal processing is not the point. It’s here only to illus-
trate the following principles of process automation:

■ Process automation does not necessarily mean that the entire process is fully automated.

■ The central component of process automation is the workflow engine, which executes
an executable process model.

■ The workflow engine controls the process by informing humans of tasks that they need
to do, and it handles the result of what the people do. (This is human workflow man-
agement.) It also communicates with internal and external IT systems. (This is service
orchestration.)

■ The workflow engine decides which tasks or service calls take place or not, under what
conditions, and according to the result of the task execution or service call. Thus the
people involved still can influence the operational sequence of an automated process.

Figure 1.2 on the following page illustrates these principles.

If you think that process automation is just a kind of software development, you are right.
The workflow engine is the compiler or interpreter, and the executable process model is the
program code. A workflow engine is the mechanism of choice where process automation
is concerned.

■ The workflow engine specializes in representing process logic. The services it provides
would have required extensive programming in the past; using a workflow engine now
can make you considerably more productive than before. (Or perhaps productivity is
not an issue for you, and so you develop your own spreadsheet, word-processing, and
drawing programs!)

■ A workflow engine combines workflow management with application integration. This
makes it a powerful tool for implementing all kinds of processes from start to end, re-
gardless of other applications or the geography of people in the process. In some BPM
software solutions, we can add a separate Enterprise Service Bus (ESB) or other compo-
nents to the workflow engine to make the whole more versatile.

■ As the workflow engine controls the process, it tracks everything. It always knows the
current stage of the process and how long each task took to complete. Because the work-

6 1 Introduction

Task
assignment

Automated
service call

Automated
service call

Task
assignment

Workflow engine

Process participant IT system IT system Process participant

Measure
running time

Automatic
decision

Executable
process model Modeling

Monitoring and
reporting

Service orchestration

Human workflow
management

FIGURE 1.2 Process automation with a workflow engine.

flow engine monitors key performance indicators directly, it provides a means to analyze
performance as well. This offers huge potential for successful process control.

The three features above would themselves justify using a workflow engine, but there is
a fourth justification: The workflow engine works on the basis of an executable process
model. In the best cases, this model can be developed —or at least understood —by some-
one who is not a technician. This promotes genuinely good communication between busi-
ness and IT, and it can even result in process documentation that corresponds to reality.

1.2 The BPM standards
Our focus in this book is on BPMN as a standard for modeling and automating processes.
But there is at least one standard that relates closely to BPMN, and complement BPMN
well. This is Decision Model and Notation (DMN) for managing decisions.

In this section, we provide an overview of the standards, and then we describe how they
can be used in combination.

1.2.1 Workflows with BPMN

Initially, BPMN stood for Business Process Modeling Notation. The first version was de-
veloped predominantly by Stephen A. White from IBM before it was published in 2004 by
Business Process Management Initiative (BPMI). From the outset, the aim was to provide
a standardized graphical process notation that also could be used for process automation.

1.2 The BPM standards 7

In 2005, Object Management Group (OMG) took over BPMI along with the further devel-
opment of BPMN. OMG is an important institution in the world of IT. It is known especially
for its Unified Modeling Language (UML), a modeling standard for software design. The
merger of BPMI with OMG was also the beginning of a global triumph for BPMN, as it pro-
vided incentive for many companies to switch.

In February 2011, OMG released the current version, BPMN version 2.0. We were able to
play a part in that. Version 2.0 came with a new definition of BPMN: Business Process Model
and Notation, because not only did version 2.0 define the notation but also the so-called
formal metamodel. Then in September 2013, BPMN was published as an ISO standard by
the International Organization for Standardization (ISO) under ISO/IEC 19510:2013. Since
then, the notation has been deliberately kept stable, because a proliferation of versions
would destroy many of the advantages, because then, for example, each tool would support
a different version, or books would have to take account of many version differences.

By now you may be wondering what this mysterious BPMN is in a material sense. BPMN
is a specification. It exists in the form of a PDF document that you can download free from
the OMG [Obj09] website. Whereas the specification document for BPMN version 1.2 was
about 320 pages, version 2.0 has expanded to 500 pages. The documents define all the
BPMN symbols, their meanings, and the rules on combining them.

With version 1.2, BPMN had not yet defined all the technical attributes necessary for direct
execution of BPMN models in workflow engines. This led to several unfortunate attempts
to convert ("map") BPMN models to BPEL models (see section 6.2.3 on page 172). BPMN
version 2.0, however, made direct execution possible. That’s an important factor in terms
of the use of BPMN models. Another important factor is standardization, which offers the
following advantages:

■ You become more independent from certain BPM tools when you do not have to learn a
new notation every time you change tools. Today more than 100 BPMN tools exist; many
of them are free.

■ There’s a good chance that your partners in other companies (customers, suppliers, con-
sultants, and so on) are familiar with BPMN and can therefore understand your process
models quickly.

■ When hiring new staff, it’s likelier that more of them already can read or generate your
BPMN process models.

■ When universities and private companies invest time and money to develop additional
solutions based on BPMN, this is to your benefit as well. Our BPMN framework, which
we present later, is an example of this commitment —we never would have developed it
if BPMN were not a standard.

1.2.2 DMN for rule-based decisions

DMN is short for Decision Model and Notation. Like BPMN, it is administered by OMG.
DMN is the newest of the three standards. Version 1.0 was released in September 2015.
Version 1.2 is the current version when releasing this edition of the book.

A decision in the DMN sense means deriving a result (output) from given facts (input) on
the basis of defined logic (decision logic).

8 1 Introduction

Unlike BPMN, DMN is not about activities or processes. DMN works in an operationally
similar fashion: decisions can be modeled by a business user and then executed by a deci-
sion engine. Another similarity to BPMN is that the DMN standard specification contains
both a written description of the notation and an XML-based formal metamodel.

The DMN standard offers different ways to model decisions. The most popular way is the
decision table described in section 5.2.1 on page 151. Within decision tables you must de-
fine the specific conditions needed to determine a result. The definition has to be under-
standable and implementable on a technical level —BPMN users will recognize how this
corresponds to BPMN —and it is why we use a formal language called Friendly Enough
Expression Language (FEEL). FEEL is part of the DMN standard, and we introduce it in
section 5.2.4 on page 159.

Often, complex decisions are made up of comparatively simple decisions. The Decision
Requirements Diagrams (DRDs) described in section 5.2.5 on page 162 help us to dissect
complex decisions into their components and make them clearer.

Similar to BPMN, the value of DMN peaks when modeled decisions are executed by a com-
patible decision engine. This offers the following advantages:

■ Transparency: Everyone can easily understand how decisions are being made. This
knowledge is no longer buried either in the heads of certain employees nor in barely
intelligible application source code.

■ Traceability: Every decision can be logged automatically by the decision engine. It is
possible to trace why certain decisions were made.

■ Flexibility: The decision logic can be adapted more readily. It does not have to be rolled
out accompanied by lengthy training or documentation; it can just be deployed. In this
regard, DMN is slightly superior to BPMN because changing BPMN diagrams intended
for execution by a process engine can be too risky for a non-programmer. (This may be
hard to appreciate —after all, how hard can it be to add, move, or delete a few symbols?
True, but the technical process is only one part of an entire application architecture that
can be affected by the unintended consequences of small changes.) Something similar
can happen with a DMN decision table, but the consequences are more easily recogniz-
able and, unlike in BPMN, there are no technical attributes behind the symbols that have
to be maintained. It is thus more easily possible for the business department to design
or adapt software solutions independently of IT.

Activities and decisions are closely entwined in business processes. BPMN version 2.0 de-
fined a business rule task more than four years before the first version of DMN. Even then it
was assumed that when completing processes, rules would be assessed constantly as part
of making decisions. The term decision management was not common at that time, how-
ever; we spoke instead of business rule management, which explains the description of that
task type in BPMN.

1.2.3 Structured vs. unstructured workflows

BPMN focuses on business processes, but there is an important limitation: There are some
processes that are poorly suited to modeling or automation in BPMN. These are the un-
structured processes —processes that do not always take place in a predictable and repeat-

1.2 The BPM standards 9

able way. An example of an unstructured process is that of a doctor coming upon the scene
of an accident with injuries. She is unlikely to work through a BPMN diagram but instead
will quickly plunge in, making decisions based on her knowledge and experience, of course,
but also in reaction to the chaos of the scene. We could draw other examples from practi-
cally every sector or industry, though many are less obvious.

This is why the CMMN standard was invented alongside BPMN. CMMN is short for Case
Management Model and Notation. OMG published CMMN version 1.0 in March 2014 and
the current version when writing this edition is 1.1. We introduced that notation in some
detail in the 3rd edition of this book, used it a lot when working with customers and also
added support for it in our software platform. We gave CMMN two years to take off, but,
within that time, we experienced limited value from CMMN in our projects, especially if
you compare it to BPMN or DMN. One observation was, for example, that most logic in
CMMN models was hidden in complex rule-sets if certain activities are possible, impossi-
ble, mandatory or unnecessary. These rules were often expressed elsewhere and also not
represented graphically. Exaggerating a bit, the CMMN model becomes kind of a graphical
bullet point list. So we decided to remove CMMN from this book to not confuse anybody
that just embarks on their BPM journey. Instead we want to emphasis how to tackle un-
structured processes with BPMN in section 4.5.5 on page 142 and point out the limits of
this approach.

Close your eyes (metaphorically speaking) and imagine that you are hosting a workshop
to design a business process. You have a room full of people who have a stake in the pro-
cess, and your mutual goal is to come up with a BPMN process model. You start with a
manageable circle of participants, and you ask them what the first task should be.

The answer to your question depends, they tell you, and they proceed to pepper you with
an entire list of conditions. It seems that you will have to model the evaluation of conditions
first, and you’ll use a gateway with many possible paths leading out of it.

During the course of the meeting, participants also point out the frequent need to jump
back within the process and to repeat a previous task. While it is easy enough to represent
such jumps in BPMN, if they have to be represented for more than half of the tasks, your
model quickly starts to resemble a bowl of spaghetti. There are two ways out of this mess:

1. You explain that they will have to start working in a more structured manner, with fewer
exceptions, deviations, backtracks and the like. This will limit their flexibility when act-
ing within the process, which may frustrate employees and customers alike. On the
other hand, the process will become predictable, repeatable, and less dependent on the
implicit knowledge of the humans controlling the process.

2. You accept that every case may be different, and that this process cannot be structured
homogeneously. You need to ensure that the people working on cases have enough lat-
itude to make use of all their knowledge and experience. BPMN might be at its limit
here and you need to find another way of approaching a solution. CMMN might be an
option, but proprietary products might be as well. Very often these problems boil down
to individual software, groupware, Trello- or IFTTT-alike tools or case management so-
lutions.

BPMN assumes a clear order, a basic sequence in which the tasks are expected to be car-
ried out. But of course there are possibilities to define branches, backflows, and reactions
to events. In our projects, these possibilities are often sufficient to properly model partly

10 1 Introduction

unstructured models. We will further examine this in section 4.5.5 on page 142. In the real
world, an entire process seldom fits a completely structured or unstructured pattern. More
commonly, there are some structured parts within a process —and these can be captured
in BPMN —as well as some unstructured parts for which you will need other possibilities.

So let’s get going and look at our first example, including some flexibility for human inter-
vention.

1.3 First example
Our scenario comes from the insurance industry. It is simplified, but it represents the kinds
of real-life situations we have encountered repeatedly. Note that the models used here are
more than theoretical constructs or documentation; they are executable by engines, one of
which is our own product, Camunda BPM. Camunda BPM allows you both to model and
execute models in BPMN as well as DMN.

If you have no experience with BPMN, or DMN, the following may seem like a forced march
through notational language you don’t yet know. To help, we have added cross references
to the sections of the book in which we detail the notational elements.

Let’s get started.

Suppose you want to take out car insurance. Nowadays your first stop is the Internet, where
you compare offers and decide on a provider. You visit the website of your chosen insur-
ance company —in this case, the fictitious Camundanzia Insurance. You complete an ap-
plication form (see figure 1.3) with the following data:

FIGURE 1.3 The Camundanzia website.

1.3 First example 11

■ Your date of birth is January 1, 1980. At the time we wrote this, you were 39.

■ The manufacturer of your vehicle is BMW.

■ The vehicle model is an X3.

You click to submit the form and lean back, eagerly awaiting your insurance policy.

The data from the form immediately creates an instance of a business process at Camun-
danzia, which has been modeled in BPMN and is technically implemented in Camunda
BPM (see figure 1.4). We can tell this from looking at the start event application received.
The BPMN-compatible workflow engine first mentioned in section 1.1.4 on page 5 now
goes to work.

FIGURE 1.4 Request processing in BPMN.

The process starts with the determine risks business rule task. On the model side, this task
is linked to the DMN decision table risk assessment (see figure 1.5) that is now carried out
by the decision engine. The decision engine evaluates the input values for applicant age,
vehicle manufacturer, and car model. The workflow model transferred these values to the
decision engine when the business rule task was carried out.

C Age Vehicle manufacturer Vehicle type Risk Risk rating

1 <= 21 - - "Beginner" "yellow"
2 <= 25 "Porsche" "911" "Too young and fast" "red"
3 <= 30 "BMW" - "Young and fast" "yellow"
4 - "Porsche" "911" "Pointless speeding" "yellow"
5 - "BMW" "X3" "High value vehicle" "yellow"

Risk assessment

FIGURE 1.5 Risk assessment in DMN.

Because you said you drive a BMW X3, rule number 5 applies regardless of your age. This
rule states that any driver of a high-value vehicle gets a yellow risk rating.

The decision engine feeds two output values —one for the vehicle and one for the risk rat-
ing —back to the workflow engine, which continues to execute the process. In the following
step we encounter an XOR gateway (see section 2.3.1 on page 28), which decides how the
process should continue based on the risk assessment.

12 1 Introduction

If no risks had been recognized, the gateway would have selected the path labeled none.
This would have led to the issue policy service task (see section 2.7 on page 61). The work-
flow engine would have called Camundanzia’s backend system through an interface, and
the backend system would have generated a document. In turn, the document would have
been fed back to the workflow engine. The next step would have been the send policy task,
which would have forwarded the document to you.

Your risk, however, fell into the yellow category because you drive a BMW X3. The XOR
gateway activates the Decide on application user task (see section 2.7 on page 61) and waits
for some clerk to decide manually, because he got some task in his inbox. The workflow
engine is patient, but because of the attached time event (see section 2.6.3 on page 49),
after two days of waiting it will launch an escalation. It will initiate another user task called
accelerate application assessment. The user task could be assigned, for instance, to the
team leader of the worker who was responsible for this application assessment.

Let’s assume that the office clerk with the expert knowledge processes the application im-
mediately. He asks himself: "Should this applicant be insured despite the high value of this
vehicle?" Maybe he needs to be flexible in handling the application, so in our example he
can request further documents. This leads to a call activity (see section 2.8.2 on page 69)
which is linked to a separate BPMN process model.

Requesting additional documents (or other activities you model accordingly) above can be
carried out or skipped, that decision is up to the office clerk. In figure 1.6, we see what the
clerk’s task form looks like.

FIGURE 1.6 Office clerk’s task form when deciding on the application.

1.4 Can BPMN bridge the gap? 13

If the end result is to accept the application, the BPMN process continues, that is, the work-
flow engine reaches the XOR gateway decision and selects the path application accepted.
Now the possibility described above becomes reality —the service task retrieves the insur-
ance policy from the back-end system, and the send task sends it to the applicant by email.

Perhaps only half an hour has elapsed since you sent your application for car insurance.
You spent it idly snoozing at your desk, didn’t you? But your reverie ends when a new email
arrives. You are thrilled at the speed with which Camundanzia was able to issue your in-
surance policy.

This concludes our example. We hope it was enlightening.

As you can see, each of the BPM standards has a role to play, but they also overlap. A ques-
tion we get asked is why we need decision tables if business rules can also be represented
in BPMN by gateways? We answer this question in section 4.5.6 on page 144.

1.4 Can BPMN bridge the gap?

1.4.1 The dilemma

First, BPMN provides a set of symbols. Second, it implies a methodology that expresses
itself as rules for combining the symbols graphically. Third, the symbol definitions and the
rules for applying them is called syntax. Fourth, the meaning of the symbols and constructs
that you can model with the symbols is called semantics.

Unfortunately, just knowing the BPMN symbols is not enough for you to create useful pro-
cess models. Since 2007, we have used BPMN extensively and often, and you can believe
that we have suffered terribly! Mainly, we suffered because we always aimed for models
with correct syntax and consistent semantics —in other words, unambiguous models. Oth-
ers took the easy way out by saying: "Our process model is not really syntactically correct,
and it’s not really unambiguous. But that doesn’t matter because the main thing is that the
consumer understands it!" This attitude backfires because:

■ When you apply BPMN in a syntactically incorrect way, you lose all benefits of standard-
ization. After all, what do you need a standard for if the models all look different in the
end? Many BPMN tools won’t even enable syntactically incorrect modeling.

■ Semantic inaccuracies or inconsistencies always create the risk that your model will be
misinterpreted. This risk is particularly high if you create an inconsistent target state
process model and then send it to IT to implement.

If you want to supply your process model directly to the workflow engine, you must make
your model correct, precise, and consistent. At that point, you still have to reconcile two
contradictory objectives:

1. Different consumers must understand and accept the process model. Making the model
easy to comprehend helps to reach agreement.

2. Because the process model has to meet the requirements of formal modeling, there’s
usually an unavoidable level of complexity to it. This makes it harder to achieve the
comprehension that leads to agreement.

14 1 Introduction

Failure to reconcile the objectives, to bridge the gap in understanding between business
and technology, is the main reason that process models have had limited success in the
past. The really bad news is that BPMN alone also will not succeed!

Just as with spoken language, you can use BPMN and either succeed or fail. As with spoken
language, successful use of BPMN depends on whom you want to communicate with and
about what. You speak to your colleagues about the work you all know so well differently
than you speak to your three-year-old about why the cat doesn’t like to be pulled by its
tail. Similarly, you will need other BPMN process models for coordinating with your co-
workers than for presenting the future process to upper management. Decide for yourself
if the latter scenario is akin to the toddler-and-cat situation.

On the one hand, different BPMN process models are required for specific audiences and
topics so that they can be understood. On the other hand, each model must contain all the
detail necessary for the topic. BPMN may be a common language for business and IT, but
the phrasing will remain different nevertheless.

The following understanding is therefore imperative for your work with BPMN:

The precision and formal correctness of the process model must vary depending on the
modeling objective and the expected consumers.

1.4.2 The customers of a process model

Whenever we model processes, we have to work in a customer-focused way. We must al-
ways keep the consumer of our model in mind. We must put ourselves in his or her place.
This sounds simple, but few process models actually support this orientation.

As we have been saying, the knowledge, skills, and interests of the people who view our
process models vary a great deal. In the following list, we have compiled the types we
encounter in our BPM projects. These descriptions are for the roles played in relation to
the project; they are not the titles of people in any organization. What we find is that the
more experience an enterprise develops with BPM, the more consistently we see these roles
fulfilled. We recommend that you become familiar with:

■ Process owner: Process owners have strategic responsibilities for their processes. They
are vitally interested in optimizing performance. They often have budget authority, but
before they sign off, they need to be convinced that your improvement plan will work. In
most companies, process owners inhabit the first or second tier of management. They
may be members of management committees or heads of major divisions.

■ Process manager: Process managers have operational responsibility for their processes.
They report directly or indirectly to the process owners. They apply for improvement
projects, acting as the ordering party for external services. Process managers are often
low- or middle-level managers.

■ Process participant: Process participants work with the processes and actually create
value. Their relationship to the process manager varies greatly. In companies organized
by functional divisions —sales, logistics, and so on —a process manager is a functional
executive for the division in which the process is carried out. Process participants report
directly to that functional executive. If the process is carried out across departments,
which is common, especially in process matrix organizations (see figure 1.7) conflicts

1.4 Can BPMN bridge the gap? 15

can arise between department executives. Process modeling alone cannot resolve such
issues, which is why we do not examine them further in this book.

■ Process analyst: The core competencies of process analysts are BPM in general and
BPMN in particular. They support process managers as internal or external service
providers through all stages of the BPM life cycle. A process analyst may be the contact
for external service providers or may act as the process manager’s representative. Within
the company, process analysts usually have either their own sphere of competence in
BPM, such as the business organization, or they are part of their IT divisions. It is rare,
however, for a process analyst to be responsible for technical implementation.

The analyst may like technical work, may know BPMN from back to front, but his or her
strengths are as an organizer and communicator. As the builder of bridges between busi-
ness and IT, the process analyst is the center of every BPM project. About 70 percent of
the people who claim or are assigned to this role, in our experience, are poorly qualified
because they lack the proper analytic predisposition. The most important qualification
of a process analyst is not a facility for sending out information, but a facility for receiv-
ing it. Good process analysts naturally want to understand everything thoroughly. At the
same time, they have plenty of empathy in relating to the other people involved, and they
can tailor their communication for every group. They remember every detail, but they
also sensibly shield details from those for whom the details would just be a distraction.

Do project managers make good process analysts? No, nor should the project manager
be the same person as the process analyst. Most project managers see themselves as
"dynamic, action-oriented individuals" who constantly have to "get someone on board"
or "pull chestnuts out of the fire." They may be extremely skilled at delegating respon-
sibility although, to be honest, some are clueless windbags. It may seem ideal to have a
good process analyst also manage a BPM project, but it rarely works.

■ Process engineer: Process engineers use technology to implement the target state pro-
cess modeled by process analysts. In the best cases, they do so in the workflow engine,
which automates the process. You can call a programmer who programs the process
logic in Java, C#, or another language a process engineer. The programmer’s major work
takes place during the implementation stage of the BPM life cycle, though the process
analyst may get the process engineer involved at other stages as well.

DCBA

Process
Manager

 B

Process
Manager

 C

Process
Manager

 A

Functional Manager
 A

Process
Participant

AA

Functional Manager
 B

Functional Manager
 C

Functional Manager
 D

Process
Participant

AB

Process
Participant

AC

Process
Participant

AD

Process
Participant

BA

Process
Participant

BB

Process
Participant

BC

Process
Participant

BD

Process
Participant

CA

Process
Participant

CB

Process
Participant

CC

Process
Participant

CD

FUNCTIONAL DIVISIONS

P
R

O
C

E
S

SE
S

C
B

A

FIGURE 1.7 The process matrix organization.

16 1 Introduction

Now that we’ve outlined the potential customers of a process model, we can talk about
what the models should look like to keep these customers happy.

1.5 A method framework for BPMN
In our consulting projects and workshops, we have introduced a great many people from
all kinds of enterprises to BPMN. From that collected experience, we have developed a
practical framework for applying BPMN.

This framework helps us decide which BPMN symbols and constructs to use in which sit-
uations —and also when to hold back in the interest of simplicity. The framework focuses
on projects with processes that need improved technological support and in which it is the
target state that needs to be modeled. In principle, what we show as modeling patterns can
also be applied to other scenarios such as the discovery, documentation, and analysis of
current-state processes.

For this edition of the book, we revamped the way we visualize the framework. The fol-
lowing section introduces the new visualization, and then we explain why we changed it.
Basically, we now find fault with a widespread approach to process-focused IT projects,
and we want to present an alternative that our experience suggests is better.

1.5.1 The Camunda house

Strategic process model

Operational process model

Human
process flow

Technical
process flow

Process overview
Fast comprehension
Logically abstract

Operational processes
Coordinate details between
human process flow and technical
process flow (automation)
Physically specific

Content:
Goal:

Semantics:

Content:
Goal:

Semantics:

FIGURE 1.8 Camunda BPMN framework.

The Camunda BPMN framework in figure 1.8, or Camunda house for short, distinguishes
between strategic and operational process models:

■ Strategic process model: The primary target group for strategic process models are pro-
cess owners and process managers. A secondary group early in the project may include
process participants and process analysts. We provide the strategic model as a general,

1.5 A method framework for BPMN 17

results-oriented representation of the process because we want to create the quickest
possible understanding for an audience that has no special BPMN knowledge. We sketch
the process in a few steps, but we don’t show errors or variations. See chapter 3 for more
detailed information on creating strategic process models.

■ Operational process model: At this level, we investigate operational details of the actual
process. It may contain human or technical process flows, and we model them accord-
ingly. A human flow is handled by a participant while a technical flow is handled by
software —preferably a workflow engine. Of course, the human and technical flows can
interact. A human may trigger a technical flow in the course of doing his or her work, as
in the case of calling a software function. Equally, a technical flow may require a partici-
pant to send an email, assign a task, and so on. The human flow thus is triggered by the
technical flow. We handle developing human and technical process flows in chapter 4
and chapter 6.

The Camunda house is a purely methodological framework. In other words, it works inde-
pendently of particular software tools, although certain tool functions may make it easier
to apply. We deal with this in section 7.4.2 on page 204.

About half of this book is a detailed description of this framework. Because those chap-
ters offer so much practical information, we encourage you to read them even if you are
unconvinced of our framework’s utility. If that’s the case, just think of our framework as a
classification system for our advice on applying BPMN practically.

Either way, we look forward to your comments and feedback, not just on this book, but also
on the framework itself. By nature it’s not a perfect approach, and it is subject to constant
change and development. With your help, perhaps we can make it better for everyone!

Tooling

We developed the Camunda house specifically to represent projects involving a lone pro-
cess or a manageable group of related processes. For now, we won’t deal with modeling
entire process landscapes. BPMN’s portfolio does not encompass process landscapes.
We have modeled process landscapes at a customer’s request (we primarily used col-
lapsed pools and message flows as described in section 2.9 on page 78), but we cannot
recommend it. If you want a process landscape, you should use a more appropriate
tool —perhaps a proprietary one that uses block arrows and rectangles and lots of col-
ors. Of course, you can refine a process landscape with BPMN diagrams by linking the
individual elements with flow charts.

1.5.2 The great misunderstanding

This is a confession. We declare ourselves guilty of spreading a deceptive image. The Ca-
munda BPMN framework shown in figure 1.9 on the following page was used in a previous
edition of this book. Released in German in 2009 and in English in 2012, it was a huge
success. Hundreds of BPMN projects used the pyramid depiction of the framework for ori-
entation. A large, international software vendor even included the pyramid in its marketing
material. Unfortunately, it resulted in some misunderstandings.

18 1 Introduction

Level 2
Operational process model

Level 3a
Executable

process model

Level 1
Strategic

process model

Level 3b
IT specification

Level 4b
Implementation

with workflow engine

without workflow engine

Strategic process model

Operational process model

Human
process flow

Technical
process flow

FIGURE 1.9 From old to new: The Camunda BPMN framework.

In the pyramid, we distinguished between strategic, operational, and technical levels. It
seems similar at first to the Camunda house, but the Camunda house defines the technical
level as a component called technical process flows within the operational process model,
and not as a level of its own. The pyramid put the operational level in a position equivalent
to what we now call human process flows.

This change was necessary because people too often assumed that the technical level was
a refinement of the operational level, in other words, that the technical level merely added
more detail. In reality, operational-level models (in the sense of the earlier framework) are
often more detailed than their corresponding technical-level models. For example, think
of a simple technical process flow —that triggers a complex manual task —which then re-
quires a complex manual process.

Two related misunderstandings came up.

The first was a perception that the modeling on three levels had to take place in a fixed
sequence, that the target-state process must be created first on the strategic level, and then
on the operational level, and finally on the technical level. There’s no need for that. It often
makes more sense to create the operational or technical model first. Doing it this way
allows you to develop a clearer understanding of the way process participants will have
to do their work before you attempt to summarize or abstract it into a strategic process
model. It is, in fact, common practice to conceive the technical and human flows of a
process model concurrently, for example, in a workshop.

The second misunderstanding related to a strict separation of responsibilities. It was as-
sumed that only the business side would define the strategic and operational levels while
only the IT Department would define the technical level. We found this assumption most
frequently in enterprises with difficult political situations, where cooperation between IT,
operations, and business departments was less than ideal.

We should all understand that even a technical flow represents a business model. After all,
it describes business requirements. It differs from a classic request document only in that
the technical flow anticipates the executable source code —a major advantage of BPMN.
The risk in such a strict segregation of responsibilities is that the technical model, while

1.6 Domains, boundaries and the risk of BPMN monoliths 19

compliant with requirements, may become incomprehensible and unsatisfactory to the
business.

It is a similarly serious matter not to involve IT sufficiently in the design of human pro-
cesses. To believe that you can define a process purely from an operational perspective
and only then align the technical implementation with it is . . . naive. Experience shows us
repeatedly that operational decisions can and should be influenced by technological re-
alities, either because what the business wants is technologically impossible (or perhaps
infeasible for cost reasons), or because the technology can offer solutions that are not on
the radar for the people defining operational requirements.

To summarize, you could say that the operational process model belongs both to the busi-
ness and to IT. As a shared artifact, both parties should share in its development.

What does this thinking mean in terms of our approach to projects? Basically, it aligns with
that of agile project organizations: The strict separation of concept from realization is as
outmoded as the classic waterfall pattern of development. Most IT projects go better with
iterative development, either in sprints within Scrum or otherwise, and it doesn’t matter if
the project is about process improvement or automation. The business and IT shouldn’t
work in isolation.

To be abundantly clear: Project participants may need to be shaken out of their comfort
zones and motivated sufficiently to work honestly with "the other side." In our engage-
ments during the last few years, the result of our strong encouragement for cooperation
always has been the same: massive amazement at how productive a project can be. When
IT and the business work side-by-side to define the target-state process at the strategic and
operational levels, including technical flows, the technical flows can become executable
within days or even hours.

As Thorsten Schramm of LVM Versicherung (a large insurance firm) put it during one of
our workshops:

"It took only a few days to highly inspire the whole project team (consisting of people from
both IT and business departments) for process modelling with BPMN, and right now the
first improved processes are already emerging."

Thorsten distills our message nicely. Sometimes, the cooperation experienced within a
workshop is just as meaningful as learning the BPMN methodology. BPMN thus can oper-
ate synergistically to produce positive change within the enterprise.

1.6 Domains, boundaries and the risk of
BPMN monoliths

The microservice architectural style is currently on the rise. For example, in a 2018 sur-
vey ([Cam18]) 63% of participating companies had already adopted microservices archi-
tectures. The idea is that software is no longer built as large monolithic applications, but
rather as a bunch of smaller microservices that focus on exactly one business capability
each. Every services is owned by one team that cares about design, development, deploy-
ment, operations and maintenance. A microservice has a clear responsibility and API, and

20 1 Introduction

only these are known to the rest of the company Without implementation details. This is
contrary to horizontal teams you see so often, like the business analysts, the software de-
velopers, the database admins and operation folks. Instead, you will have the "customer
onboarding" team, that bundles all these roles and can act on its own.

Splitting up logic into microservices influences business processes and their models in
BPMN. There are only rare cases where a business process will be handled completely by
one microservice, instead you will see microservices that need to collaborate to implement
end-to-end business processes.

If you now think of the Camunda house, this means that several operational processes (in
the respective microservices) interact to achieve the overall goal. If we wanted to drive the
metaphor further, it would probably be a village consisting of different Camunda houses.
The end-to-end process from the customers’ point of view would probably be the gate in
the city wall and... But let’s drop that and look at a small example in figure 1.10.

Microservice Insurance Application

Microservice Policy

FIGURE 1.10 Several microservices need to collaborate to implement an end-to-end business
process. Every microservice has its own local process.

The microservice inbound application is responsible for end-to-end processing applica-
tions for an insurance policy. Therefore it includes a BPMN process, which we’ve already
looked at. Now, however, the policy itself is an independent task and will probably be dealt
with in a separate microservice. This is perhaps only a facade in front of an existing legacy
system. The two microservices must now work together to process a new application.

1.6 Domains, boundaries and the risk of BPMN monoliths 21

The challenge, by the way, is usually to determine the boundaries of the services and the
exact responsibility of individual services. There is no right or wrong, only more or less
suitable. In our example, there are different variants that can all make sense. For example,
the policy microservice could send out documents itself to the customer, but that could
also be part of the application microservice. However, there may also be a separate service
for sending documents. It is important to make a conscious decision and then design the
processes accordingly. For this topic we can recommend the literature around domain-
driven design. And if you are in need of a distraction anyway, please take a look on the
Internet and search for the "bounded context".

At this point we just want to explicitly warn against, as we call it, "BPMN monoliths". A
BPMN monolith is a process model that mixes details from different microservices, thus
not respecting their responsibilities and boundaries. Such a model does not have a single
person responsible for the process and is usually very cumbersome to coordinate because
too many stakeholders want to participate. You cannot automate this model directly be-
cause it has to be distributed among different microservices.

In
su

ra
nc

e
Ap

pl
ic

at
io

n

Determine risks Send policyIssue policy Trigger first
invoice

Wait for first
invoice to be

paid

Invalidate
policy

Send rejection
Note rejection
in back-end

system

Application
received

Risks?

Policy issued

None

Decide on
application

Decision?
3 weeks

Application
approved but

policy timed out

Application
rejected

Red

Only yellow

Application
accepted

Application
rejected

FIGURE 1.11 Antipattern BPMN monolith: This model includes details about responsibilities
from other microservices.

Figure 1.11 shows an example of such a BPMN monolith. In addition to the processing of
the application, there is business logic of the policy included, like the fact that policies only
become valid if the first invoice is paid within a defined period. The application microser-
vice should not know this detail - it only wants to know whether a policy was successful or
not - and perhaps how long it has to wait at most.

We know from our own experience that in the heat of a successful modeling workshop these
monoliths can be created very quickly, as many details bubble out of the participants very
naturally at this moment. Often it is even helpful to understand the overall situation and to
allow these models. However, they may not be continued, let alone automated, so they are
clearly an intermediate step before the process is sliced into individual parts. When doing
so, the microservices boundaries must be taken into account.

And, of course, it can still make sense to design a monolithic system. In this case you can
model and execute a BPMN monolith accordingly.

In chapter 4.5.3 on page 140 we will follow-up on this topic again with another example.

2 The notation in detail

2.1 Understanding BPMN
What does a monkey know about the taste of ginger?

This Indian proverb expresses the truism that you can’t fully appreciate what you don’t un-
derstand. We see a corollary in the English expression, "Don’t cast pearls before swine."

BPMN is a pearl not everyone can appreciate because not everyone understands it. If you
are new to the standard, you won’t regret spending some time to familiarize yourself with
its underlying principles. For those who already know the BPMN specification, this chapter
provides explanation and tips beyond the specification itself. It also describes the visual
conventions we use when applying symbols. This is our modeling etiquette.

A full understanding makes BPMN an extremely powerful tool for any modern BPM project.
In our experience, however, even those with high confidence in their BPMN knowledge still
may fail to understand certain fundamental principles, and they often express surprise that
sequence flows must not be drawn across pool boundaries.

2.1.1 Things BPMN does not do

BPMN was developed to model processes: logical, chronological sequences of events.
That’s all. Nonetheless, you often hear BPMN criticized for not representing:

■ Process landscapes

■ Organizational structures

■ Data

■ Strategies

■ Business rules

■ IT landscapes

We appreciate how important it is to incorporate these topics into process documentation.
We also know that many process professionals come from the systematic world of Architec-
ture of Integrated Information Systems (ARIS) (see section 2.12.1 on page 89). They have
worked with event-driven process chains (EPCs), and they may regard BPMN as insuffi-
cient. But feasible (and even partly standardized) notations exist for the topics in the list

24 2 The notation in detail

above, and we are glad for it! It relieves BPMN of over-complication and keeps BPMN from
being a monstrosity that nobody would want to compile, develop, or even understand. We
remind those professionals that:

■ BPMN process models are easy to combine with other types of diagrams. It is just a
question of the tools used.

■ BPMN provides extension options, including custom symbols. We explain this in sec-
tion 2.11.2 on page 88.

Obviously it would be wonderful if BPMN could provide a complete, out-of-the-box alter-
native for the ARIS methodology. We admit that’s not the case for the pure standard, but
precisely because BPMN is a standard, software tools are now being created to use BPMN
for the other necessary views.

2.1.2 A map: The basic elements of BPMN

When you draw a process diagram in BPMN, you use symbols that can be assigned to the
categories shown in figure 2.1. We refer to these categories as the basic elements of BPMN.

In general, certain tasks have to be carried out during a process (activities), perhaps under
certain conditions (gateways), and things may happen (events). What connects these three
flow objects are sequence flows, but only within a pool. If connections cross pool bound-
aries, the process resorts to message flows.

Furthermore, artifacts provide additional information on the process, but these cannot in-
fluence the order of flow objects directly. Every artifact can connect to every flow object

Text

P
oo

l La
ne

La
ne

Sequence flow

Message flow

Association

Event

Activity

Gateway Custom
artifacts

Group

Annotation

Flow objects Connecting objects Artifacts

Participants Data

?

Data object

Data store

Data input

Data output

FIGURE 2.1 The basic elements of BPMN

2.1 Understanding BPMN 25

through associations. (You can also incorporate your own symbols as additional artifacts
into a BPMN palette all your own. We detail this option in section 2.11.2 on page 88.)

BPMN contains an additional data category. This refers to the creation, processing, and
filing of information that may become relevant within the scope of process handling, thus
the category’s symbols usually connect to activities through associations.

There are three more aspects necessary to a full understanding of BPMN:

■ The advanced ideas and rules behind this simple scheme

■ The full range of symbols and

■ The practical know-how to apply this stuff

The ideas and rules and the full range of symbols are explained later in this chapter. The
practical know-how is acquired through experience, but we offer our knowledge in the sub-
sequent chapters to help speed your progress. We’ve also devised a few recipes for applying
BPMN. They may help you to avoid some traps that often snare beginners.

2.1.3 Perspectives in process analysis

Someone accustomed to modeling processes with other notation systems may have trou-
ble adjusting to an extremely important aspect of BPMN: everything depends on perspec-
tive.

BPMN is based on the assumption that one or more participants can exist within one di-
agram. Do not, however, jump to the conclusion that a participant functions like a role,
a department, or an employee! In BPMN, a participant is a logical element to which the
following rules apply:

■ There can be only one participant for each process. (This means logical participants;
there may be many human participants.)

■ The participant has complete control over the process flow.

■ The participant is fully responsible for its process.

■ Other participants cannot influence a participant’s process; they may not even know how
it works.

■ If a participant wants to interact with other participants within the context of the pro-
cess, the participant must communicate with the others, and they affect their own pro-
cesses accordingly.

The same process may look completely different for each participant, and how it looks
depends on its perspective. This results in different process models.

In BPMN, the symbol for a participant and for its process is the pool; each process gets its
own pool. Logically, however, a participant can control more than one process.

If you learn to handle pools properly, you will have mastered the most significant principle
of process modeling —assuming you’re aiming for modern BPM aligned with necessary
business IT. In section 2.9 on page 78, we detail this subject and also solve the riddle of why
there can be only one logical participant for each process.

26 2 The notation in detail

2.1.4 Models, instances, tokens, and correlations

In the specification for BPMN 2.0, Chapter 7 contains a section titled Understanding the
behavior of diagrams. It introduces the idea that the behavior of the diagrams must be
understood as well as the processes they describe. (Note: Because a diagram may contain
several pools, a single diagram implies n processes). This is easier in theory than in practice
because some process models are so complex that it becomes hard to know how to handle
some circumstances. Remember the following:

■ Process model: The basic description of a process. A diagram may describe one or more
process models.

■ Process instance: A process carried out in reality. One single customer complaint is an
instance of the complaint process, for example. Some processes may be instantiated
only a few times in a year, such as end-of-quarter reporting in the accounting depart-
ment. Other instances occur more often. Think of the millions of credit-report requests
in a year’s time.

■ Token: You can apply the token model, if you have a process model in mind and want to
find out which process paths must or may be used during a process instance. A token is
a concept we compare to a car: A car follows a road. At an intersection, its driver must
decide to continue in a straight path or to turn left or right. Or perhaps the car turns and
a clone of the car continues straight on. This is where the car metaphor breaks down, but
we hope you get the gist: that the road system corresponds to a process model and that
any particular route the car takes represents an instance. The token model can help you
understand even the most complex BPMN process models, so tokens are also explained
in the above-mentioned section of the BPMN specification. We apply this method fre-
quently in examples throughout this book.

■ Correlation: Do you ever get letters with a transaction key or a file number? When you
reply, you are expected to reference the key or number to make it easier for your corre-
spondent to allocate your communication properly. This allocation based on an unam-
biguous key is called correlation. Another example is when you pay a bill, and you are
asked to write the invoice number on your check. If you don’t comply, your payment
may not be properly allocated, and the lack of correlation can lead to reminder notices,
late-payment fees, and other unpleasantness. Correlation is often crucial to the success
of processes, from both organizational and technical points of view. Some of the costliest
mistakes come from carelessness with the issue of appropriate correlation.

2.1.5 Symbols and attributes

The BPMN specification describes the symbols provided for process modeling. It also de-
scribes the many attributes that you can assign to the symbols. Many of these attributes
don’t appear in diagrams, though they are stored in the modeling tool and used when a
workflow engine executes the modeled process.

2.2 Simple tasks and none events 27

2.2 Simple tasks and none events

Acquire
groceries Eat mealPrepare meal

Hunger
noticed Meal prepared Hunger

satisfied

None start
event

Task None intermediate
event

None end
event

Sequence flow

FIGURE 2.2 Our first process

Figure 2.2 shows a simple process triggered by someone being hungry. The result is that
someone must shop for groceries and prepare a meal. After that, someone will eat the
meal and have his or her hunger satisfied. You will easily recognize the following symbols
and their meanings in the diagram:

Tasks

Tasks are the heart of the process. Ultimately, something has to happen to bring about a
desired outcome. In BPMN, a task technically is part of the activities category, which also
includes the subprocess explained in section 2.8 on page 66.

Our modeling etiquette

When naming tasks, we try to adhere to the object-oriented design principle of using the
[verb] + [object] pattern. We would say acquire groceries, for example, not first take care
of shopping for groceries.

Events

Events describe significant things that happen before, during, or at the end of a process.
The example in Figure 2.2 uses only none events. None events can be used in a process flow
to indicate a status or a milestone. We explain about more event types later.

■ Start events show which event causes the process to start.

■ Intermediate events stand for a status that is reached in the process and that is modeled
explicitly. They are used infrequently, but intermediate events can be useful, for exam-
ple, if you regard reaching a certain status as a milestone and you want to measure the
time until the milestone is reached.

■ End events mark the status reached at the end of the process path.

Even for these simple events, we have to make further distinctions:

■ Start events are catching events. That means something happened independent of the
process, but the process has to wait for this event, or react to it.

■ Intermediate events may occur, or they may be caused or triggered by the process itself
(throwing events). The none intermediate event marks a status reached by the process
and is therefore a throwing event. (Again, we will explain about more event types later,
including more types of intermediate events to be classified as catching events.)

28 2 The notation in detail

■ End events take place when the process can no longer react to them. As a consequence,
only the process can trigger them.

Our modeling etiquette

Events refer to something that has already happened regardless of the process (if they
are catching events) and as a result of the process (if they are throwing events). For this
reason, we use the [object] and make the [verb] passive in voice, so we write hunger
noticed. BPMN does not require you to model start and end events for a process —you
can leave them out —but if you model a start event, you must model an end event for
each path. The same is true for end events that require start events. We always create
our models with start and end events for two reasons: first, that way it’s possible to
determine the process trigger, and second, you can describe the final status of each
path end. We only sometimes abandon this practice with subprocesses. More on this
later.

Sequence flows

The sequence flow describes the time-logic sequence of the flow elements: tasks, events,
and the gateways we describe later.

The process path taken by our token is also a sequence flow. It is born with the process
instance because of the start event. Through the sequence flow and by means of the tasks
and the intermediate events, it reaches the end event, where it is consumed and disappears.
This also leads to the death of our process instance.

Our modeling etiquette

We always draw our process diagrams horizontally, from left to right, but there is nothing
to keep you from orienting your flow differently. You may orient your diagrams vertically
instead of horizontally, for example, although that is unusual.

2.3 Design process paths with gateways
2.3.1 Data-based exclusive gateway

Certain things can only be done under certain circumstances, so few processes always take
the same course.

In our simple example (figure 2.3 on the facing page), we want to go into the details of
cookery. Driven by hunger, we think about what we are going to cook today. We only know
three recipes, so we choose one. We can either cook pasta or cook a steak or prepare a
salad. Let’s say that these options are exclusive —we will never prepare more than one at
a time. The point of decision on what to do next is called a gateway. We decide based on
available data (the chosen recipe) and we follow only one of the paths, which is a data-
based exclusive gateway. We abbreviate exclusive gateway as XOR.

2.3 Design process paths with gateways 29

Hunger
noticed

Data-based
exclusive gateway

(splitting)

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Pasta
done

Steak
done

Prepare saladSalad

Salad
done

FIGURE 2.3 The XOR gateway.

Bear in mind that a gateway is not a task! You have to determine facts and needs before
reaching a gateway. We will encounter this again in Business Decision Management (see
section 4.5.6 on page 144).

=
FIGURE 2.4 Both symbols mean the same.

BPMN uses two symbols for XOR gateways (see figure 2.4). They are identical in meaning.
We always use the version with the X because it seems less ambiguous, but use what works
for you.

Our modeling etiquette

As in figure 2.3, we place the crucial question before the gateway. This is our convention,
which has proved its value in our projects. Possible answers go on parallel paths after
the gateway, which is how the BPMN specification shows them. We always work with
XOR gateways as follows:

1. Model the task that requires a decision for the XOR gateway.

2. Model the XOR gateway after that. Create a question with mutually exclusive an-
swers.

3. Model one outgoing path (or sequence flow) for each possible answer, and label the
path with the answer.

An XOR gateway can have as many outgoing paths as you like. We start some paths in
the upper left corner and the others in the bottom left corner, but these are just our style
conventions.

By the way, it is not unusual to have three end events nor for the process to result in three
end states. Recognizing this possibility can help you with more complex diagrams. Later,

30 2 The notation in detail

we will give more reasons for working with different end events. BPMN is not a block-
oriented process notation, so you need not merge a split process path later —you can, but
you don’t have to.

Certainly, it may make semantic sense to merge the three paths. The meal is eaten after it’s
prepared, regardless of the recipe chosen. We can use the XOR gateway for merging also,
and doing so leads the tokens from the three incoming paths into a single outgoing path.
(See figure 2.5.)

Hunger
noticed

Data-based
exclusive gateway

(merging)

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Prepare saladSalad

Eat meal

Hunger
satisfied

FIGURE 2.5 XOR gateways can also merge.

The double application of the XOR gateway —splitting and merging or XOR split and XOR
merge —may confuse beginners. You can even model an XOR gateway that merges and
splits at once! (See figure 2.6.) You have to decide if you prefer to compact your diagrams
this way. For our part, we usually choose not to do that, and instead draw the two XOR
gateways in succession. This method prevents misinterpretation.

Data-based
exclusive gateway

(merging and
splitting)

Is xy applicable?

Yes

No

...

...

...

...

...

...

Data-based
exclusive gateway

(merging)

Is xy applicable?

...

...

...

...

Yes

No

...

...

Data-based
exclusive gateway

(splitting)

=

FIGURE 2.6 Two ways of representing a combined merge/split.

2.3.2 Parallel gateway

Suppose that now we want a salad on the side. If you want salad no matter what, you could
model it as we have done in figure 2.7 on the facing page.

Here, we’ve introduced another symbol, the (text) annotation. This is an artifact that you
can associate with any flow object (in this case, tasks). You can enter any text; in our ex-

2.3 Design process paths with gateways 31

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Eat meal

Hunger
satisfied

Prepare salad

3 minutes 10 minutes 15 minutes

10 minutes

20 minutes

Annotation
Association

FIGURE 2.7 Preparing salad and main course.

ample, we entered the average time to carry out the associated task. The total of the task
times equals the running time of the process, which was a total of 48 minutes for pasta and
43 minutes for steak. Congratulations: you’ve just analyzed your first process based on key
data!

Still, this means waiting 23 or even 28 minutes until you can start to eat. Insufferable! You’re
really hungry, but what can you do? Maybe you don’t prepare the salad first and then cook
the pasta or the steak, but you work on both at the same time —in parallel. The appropriate
symbol is the parallel gateway, or the AND gateway for short, as shown in figure 2.8.

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Eat meal

Hunger
satisfied

Prepare salad

3 minutes 15 minutes

10 minutes

20 minutes

Parallel gateway
(parallelized)

Parallel gateway
(synchronizing)

10 minutes

FIGURE 2.8 Preparing salad and main course at the same time.

Diagramming tasks as parallel does not make simultaneous processing compulsory. In
contrast to the example shown in figure 2.7, it is also not imperative that you prepare the
salad before starting other tasks. Parallel preparation does, however, reduce our total time
by 10 minutes. It is classic process optimization to make tasks parallel as much as possible.

As the example shows, the process is not only parallel (it uses an AND split), but the paths
also synchronize later (an AND merge). The reason is easy to understand: you can only
start to eat after both main course and side dish are prepared.

How would the concept of tokens apply to an instance of this process? The token is born
at the start event, it runs through the choose recipe task, and then it plunges into the AND
split. One token emerges from the gateway for each path. That means two tokens in this

32 2 The notation in detail

example: The first token enters the XOR split, and its outgoing path depends on the recipe
selected.

Let’s assume we want to cook pasta. The token enters the task and stays there 15 minutes.
At the same time, the second token enters the second, prepare salad task, where it stays
only 10 minutes. After 10 minutes, it moves on to the AND merge. The number of incoming
paths determines the number of related tokens the gateway is waiting for, so here, it waits
for two tokens of the same process instance.

In our scenario, the second token arrives at the AND merge after 10 minutes, while the first
token stays in cook pasta for a total of 15 minutes. This means the AND merge waits until
the first token arrives —an additional 5 minutes. At that point, the tokens happily merge
into a single token, which continues on the outgoing path.

Does that sound too abstract or technical? It is not. The AND merge behavior is identical
to your own: The salad is ready, but the pasta is not, so you wait. When the pasta finally is
ready, you eat.

Why the seemingly complicated token concept then? Think of 90 million process instances
created by credit agencies, for instance, every year. Surely, these aren’t executed in strict
sequence. They overlap. To define and carry out such complex processes and their various
parallel operations, branchings, mergings, and synchronizations correctly every day, the
token approach is not only extremely helpful in conceptual design and implementation,
but also necessary. We hope it is clear by now that process instances are not identical to
tokens: Many tokens can run within the bounds of a single process instance.

Check your understanding with the following questions:

Question: Figure 2.9 shows the same process, but the AND merge was left out for lack of
space, and the path from the prepare salad task leads directly to the XOR merge. What
happens if we instantiate the process, and we decide in favor of pasta?

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Eat meal

Hunger
satisfied

Prepare salad

3 minutes

10 minutes

15 minutes

10 minutes

20 minutes

FIGURE 2.9 What happens in this process?

Answer: The token is generated and then cloned as always at the AND split. As soon as we
finish preparing the salad, the token passes through the XOR merge and eat meal executes.
Five minutes later, cook pasta also completes. Its token passes through the XOR merge and
eat meal executes again! That’s not the behavior we wanted.

Question: Figure 2.10 on the facing page shows a process that consists of two tasks only.
Once instantiated, how long does the process instance live?

2.3 Design process paths with gateways 33

Start

Task 1

Task 2

45 days

30 days

End

End

FIGURE 2.10 How long does the process instance live?

Answer: It lives 45 days, which corresponds to the run time of the process. Even though the
token generated in the AND split passes through task 1 after 30 days and then is consumed
by the upper end event, the second token stays in task 2 for an additional 15 days. The
process instance continues to live until the second token is consumed by the lower end
event.

Note: As long as just one token lives within the process, the process instance lives too! The
instance cannot finish until all tokens generated are consumed.

2.3.3 Data-based inclusive gateway

We want to make our process even more flexible: When we are hungry, we want to eat

■ Only a salad,

■ A salad and "something real," like pasta or steak, or

■ Only something real.

Using the symbols you have learned so far, you could model the situation as shown in fig-
ure 2.11.

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Eat meal

Hunger
satisfied

Prepare salad

3 minutes

10 minutes

15 minutes

10 minutes

20 minutes

Yes

Salad desired?

No

Something real
desired?

Yes

No

FIGURE 2.11 Various options in the combination of our meal.

If you want a more compact representation, you can use the data-based inclusive gateway
—the OR gateway for short. (See figure 2.12 on the following page.) Use OR gateways to
describe and/or types of situations, in which processing can flow along one, many, or all
outgoing paths. OR gateways can keep diagrams from becoming overly complex.

34 2 The notation in detail

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Eat meal

Hunger
satisfied

Prepare salad

3 minutes

10 minutes

15 minutes

10 minutes

20 minutes

Data-based inclusive gateway
(splitting/parallelizing)

Salad

Desired
components?

Something
real

Data-based inclusive gateway
(merging/synchronizing)

FIGURE 2.12 The OR gateway enables the compact representation of complex path variants.

We can use OR gateways to combine paths too: Depending on whether we want to eat just
a salad or something real, or a salad and something real, we have to wait either for one
token to arrive (merge) or for both tokens (synchronize) before we can eat. Note the differ-
ence between this and figure 2.11 on the previous page, however. In the version without the
OR gateway, we could have resolved not to prepare anything (neither salad nor something
real), but we ate after this decision. The OR gateway excludes this absurdity. We have to de-
cide at least in favor of a salad and/or something real, otherwise the token gets stuck in the
gateway. Strictly speaking, the BPMN specification determines that a runtime error occurs
in such a case, and that’s important when it comes to technical process implementation.

In practice, handling OR gateways is not as simple as these examples imply. It’s easy to
understand that progress depends on waiting for another token to reach an OR merge. It
can be harder to trace the synchronization rules with complex diagrams that sprawl across
several pages. Just memorizing the conditions that apply at the OR split isn’t a solution.

Start

Task 1

Task 2

45 days

30 days

End

End

Answer 1

1st
question

Answer 2

Answer 1

2nd
question

Task 3

Answer 2

FIGURE 2.13 How long does the second gateway have to wait?

Consider figure 2.13: whether the OR merge needs to synchronize or not depends on
whether the OR split runs through one or more paths. Here’s the scenario: The first token
reaches the OR merge after 30 days. Because answer 2 applied to the previous OR split
too, another token is on its way, and it will stay in task 2 for another 15 days. This task

2.3 Design process paths with gateways 35

is completed, so it becomes possible that a decision made at the XOR split results in the
second token being routed through the answer 1 path, and being consumed by the end
event. What happens to the first token at the synchronizing OR merge? The OR gateway
must register that the second token has vanished, and it must forward the first token.

This could cause problems in three circumstances:

■ You come across an OR merge in your process manual on page 10, and you have to rum-
mage through the previous 9 pages to understand what conditions require which waiting
times.

■ You implement such a process in an organization that makes a person responsible for
task 3 but permits that person no control over the process.

■ A workflow engine runs the process and controls the synchronizing behavior. It is ex-
pensive to implement such a check, and it is bound to fail. In some cases it may be
impossible.

There are a couple of reasons for using the OR gateway —with caution.

Question: Can we model the process as shown in figure 2.14?

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Eat meal

Hunger
satisfied

Prepare salad

3 minutes

10 minutes

15 minutes

10 minutes

20 minutes

Salad

FIGURE 2.14 An incredibly (?) compact version.

Answer: Sure, this makes the model more compact, but it changes the meaning. This pro-
cess model produces the following outcomes:

■ We eat only pasta.

■ We eat only steak.

■ We eat only salad.

■ We eat pasta and salad.

■ We eat steak and salad.

■ We eat pasta and steak.

■ We eat pasta, steak, and salad.

And the last two outcomes aren’t what we intend!

36 2 The notation in detail

2.3.4 Default flow and getting stuck

There’s another aspect to working with XOR and OR gateways. (To simplify matters, let’s
set the salad aside for now and focus on real meals.) What happens if we want neither
pasta nor steak? In the previous models, this situation meant that our token could never
get beyond the XOR split for desired dish. According to the BPMN specification, that throws
an exception. In other words, a runtime error occurs.

Don’t get angry because we are talking about throwing exceptions! We’ll come back to this
issue and show why it doesn’t concern only IT.

The so-called default flow protects us from runtime errors. We indicate the default flow
with the small slash shown in figure 2.15. The principle behind default flows is simply that
all outgoing paths are examined; when none of the other paths apply, the process uses the
default. Don’t mistake the default flow for the usual flow, however. The symbol does not
mean that the default applies most of the time. That’s a different question.

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Eat meal

Hunger
satisfied

Default flow
(to be recognized by

the small slash)

Have pizza
delivered

FIGURE 2.15 The default flow.

Our modeling etiquette

You don’t have to use a default flow, of course. You can draw a normal sequence flow
instead and label it other or whatever you like. We use the default flow any time there’s
a risk of getting stuck, and we want to avoid disruption to the organization. If a dia-
grammed decision has Yes or No outflows only, risk is zero; more complex decisions
present greater risk.

In our models, default flows help us to determine if we have limited the risk of getting
stuck. In terms of aligning business and IT goals, this is certainly good business practice.

2.3.5 Complex gateway

The complex gateway is a category apart. While it isn’t used often, there are situations that
justify its use. An example: we want to order pizza. We peruse the menu of our favorite
supplier, but just for a change, we also look on the Internet. Once we find something we
want to try after researching both sources, we order the pizza.

How can we model that? The attempt shown in figure 2.16 on the next page results in
ordering the pizza only after the research in both sources completes.

2.3 Design process paths with gateways 37

Hunger
noticed

Read menu

Eat meal

Hunger
satisfied

Have pizza
delivered

Research on
the Internet

FIGURE 2.16 Pizza research with AND merge.

In figure 2.17, neither is an option: Based on the token concept, we would execute the order
pizza task twice. (Remember the test question in section 2.3.2 on page 30?)

Hunger
noticed

Read menu

Eat meal

Hunger
satisifed

Have pizza
delivered

Research on
the Internet

FIGURE 2.17 Pizza research with XOR merge.

Nor does the OR merge in figure 2.18 solve the problem: When a token arrives at the OR
merge, the process waits for corresponding tokens that may never get there. The OR merge
behavior is thus the same as an AND gateway.

Hunger
noticed

Read menu

Eat meal

Hunger
satisfied

Have pizza
delivered

Research on
the Internet

FIGURE 2.18 Pizza research with OR merge.

The solution is the complex gateway combined with an annotation, as shown in figure 2.19.
As soon as one of the two tasks completes, the complex merge sends the token to the order
pizza task. When the next token reaches the complex merge, it is consumed. It vanishes.

Hunger
noticed

Read menu

Eat meal

Hunger
satisfied

Complex
gateway

Have pizza
delivered

Research on
the Internet Proceed as soon as a

result is available

FIGURE 2.19 Pizza research with complex merge.

Here’s a similar situation: Assume we execute four tasks at once. There’s a fifth task to
execute once three of the first four tasks complete. For example, we ask four friends what

38 2 The notation in detail

pizza place they want to order from. Once three friends have offered opinions, we decide.
We can model our synchronizing behavior with a complex gateway. (See figure 2.20.)

Hunger
noticed

Ask Christian

Purchase
decision

made

Make purchase
decisionAsk FalkoResearch pizza

delivery service

Ask Robert

Proceed as soon as three of
them have given their opinions.

Ask Stefan

FIGURE 2.20 Using complex gateways to realize m out of n merges.

In principle, a complex gateway also can be applied as a split —to summarize several differ-
ent gateways in one symbol to save some space, for instance. The OR split from the process
in figure 2.14 on page 35 could be replaced with a complex gateway by writing the split se-
mantics in an annotation. That doesn’t really make sense, though, and we have never used
the complex gateway as a split nor seen it used in any practical model.

2.4 Design process paths without
gateways

Some people don’t like gateways. They think gateways make process diagrams too com-
prehensive or even inflated, and they would rather do without all those diamonds. While
gateways are optional —you can instead model the logic of the XOR, AND, and OR gateways
directly with the tasks —you have to be careful. It’s rare that you can eliminate gateways
entirely.

Figure 2.21 on the facing page illustrates an alternative to the OR split as well as to the XOR
merge. The upper and the lower process models are equivalent, but the upper model shows
two flows routing directly to task 4. It also represents the OR split with conditional flow
symbols: the small diamonds connected to task 1. Conditional flow symbols may connect
only to tasks or subprocesses, and only as outlets. They may not be used with gateways or
events.

If you read section 2.3 on page 28 carefully, you likely see the problem with this: If only one
of the two conditions applies, everything is okay, but if both apply, they generate two tokens
in the OR split and so trigger task 4 twice thanks to the XOR merge. This isn’t necessarily
wrong, but it probably isn’t intended. And that brings us to the first problem associated
with gateway abstinence:

We cannot model synchronizations (that is, AND merges) without gateways.

2.4 Design process paths without gateways 39

Start

Conditional flow

Task 1

Task 2

Task 3

Task 4

End

Condition 1

Condition 2

Start

Task 1

Task 2

Task 3

Task 4

End

Condition 1

Condition 2

=

FIGURE 2.21 OR split with conditional flows and XOR merge.

The second problem is that we can’t combine conditional checks. We can’t represent the
process logic shown in figure 2.22 without gateways because of the intermediate event.

Start

Task 1

Task 2

Task 3

End

Task 4

Task 5

Answer 1

Answer 1

Answer 2

Answer 2

Question

Question

Status 1
reached

FIGURE 2.22 Combined XOR gateways.

The third problem is that conditional flows follow the same semantics as the OR split. In
other words, the defined conditions must not exclude each other. Because the OR split is
compatible with the subsequent XOR split, this isn’t crucial, but modelers and those who
use their diagrams need to be aware of this. Otherwise, in our experience, misunderstand-
ings quickly result.

Would it be better to use gateways all the time? No, there’s no need for that either. A simple
loop, for example, can be better off without XOR merges because it’s less confusing for the
inexperienced. And because BPMN permits multiple flows from start events to end events,
the diagrams can be nicely compact. We modeled the process in figure 2.23 on the next
page with and without gateways to illustrate this. (Yes, technically speaking, the models
are not identical: The upper one includes the XOR gateway syntactically, so several paths

40 2 The notation in detail

must be used. It requires that conditions 1 and 2 never occur at the same time. This is not
the case in the lower model, where both conditions can apply.)

Start
End

Task 1

Task 2

Task 3

Task 4

Condition 1

Condition 2

Question

Start
End

Task 1

Task 2

Task 3

Task 4

Condition 1

Condition 2

=

FIGURE 2.23 Both models describe (almost) the same process.

2.5 Lanes
We have talked about what to do in our processes, but we have not yet explained who is
responsible for executing which tasks. In BPMN, you can answer this question with lanes.

Figure 2.24 on the facing page shows that the tasks in our sample process were assigned to
particular people. We can derive the following process description from the assignments:
If Christian is hungry, he chooses a certain recipe. Depending on what Christian chooses,
he can either take care of it himself (cook pasta), or he can get his roommates on board. If
the latter, Falko cooks steak and Robert prepares salad. In the end, Christian eats. The three

2.5 Lanes 41

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Eat meal

Hunger
satisfied

Prepare saladSalad

Desired
components?

Something
real

Fl
at

-s
ha

rin
g

co
m

m
un

ity

C
hr

is
tia

n
Fa

lk
o

R
ob

er
t

Lane

FIGURE 2.24 Responsibilities represented using lanes.

lanes (Christian, Falko, Robert) are united in one pool designated flat-sharing community.
We discuss pools in detail in section 2.9 on page 78.

In the example, lanes equate to people, but this meaning is not specified by BPMN. You can
designate the lanes as you like. In practice, lanes are often used to assign:

■ Positions in the primary organization, for example, accounting clerk.

■ Roles in the secondary organization, for example, data protection officer.

■ General roles, for example, customer.

■ Departments, for example, sales.

■ IT applications, for example, CRM system.

Tooling

Some tools enable you to assign the elements in your diagram to different categories
or views, such as executing positions, responsible positions, supporting IT applications,
and so on. You can also show the process from the respective view. This changes the
lanes, and arranges the elements accordingly.

Incidentally, lanes have a long history in the world of process modeling. They’re analogous
to a swimming pool in which swimmers swim only in the lanes to which they are assigned.
Swimlane representations are common to different process notations.

Our modeling etiquette

BPMN does not specify that you have to order tasks either vertically or horizontally. In
figure 2.25 on the following page, the process starts in the top left corner and ends in
the bottom right, and that is our convention, but you can model it from the bottom left to
the top right as well. The essential thing is that you decide on a style for structuring your
diagrams, and then apply it consistently. Keeping to your standard makes your diagrams
easier to read from one to the next.

42 2 The notation in detail

In BPMN, lanes can also interlace to illustrate refined responsibilities. (See figure 2.25.)

P
oo

l

La
ne

 1
La

ne
 2

La
ne

 3 La
ne

 3
.1

La
ne

 3
.2

Start

Task 1

Task 2

Task 3

Task 4

FIGURE 2.25 Interlacing lanes.

Handling lanes often is trickier than you may expect. In our little process, for example, we
assume that the tasks are clearly distributed. But what if Falko and Robert want to eat too?
A representation like that in figure 2.26 would be syntactically wrong. It is not permissible
to have a flow object (activity, event, gateway) positioned outside a single lane.

The solution for keeping Falko and Robert happy is to duplicate the eat meal task and to as-
sign this task to each person (figure 2.27 on the next page). This also makes sense content-
wise, because the task actually is completed three times. There is still the possibility of
misconception, however, since it is not evident that the three men eat together. It may not
matter if Falko and Robert dine with Christian, but in cases where cooperation is intended
—perhaps the task is furnish expert opinion and you want a joint opinion, not a collection
of individual ones —you could apply a group frame as shown in section 2.11.1 on page 87.

Note: In our process diagrams, we don’t separate lane captions from the lanes themselves.
This complies with BPMN version 2.0, which explicitly forbids such a separation. This is a
change from version 1.2, where it was permitted. You may encounter BPMN diagrams like
figure 2.28, and the tool you work with may only allow lanes with separate lane headers.

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak
Eat meal

Hunger
satisfied

Prepare saladSalad

Desired
components?

Something
real

Fl
at

-s
ha

rin
g

co
m

m
un

ity

C
hr

is
tia

n
Fa

lk
o

R
ob

er
t

ERROR: This representation
is not permissible in BPMN!

FIGURE 2.26 Incorrect lane handling.

2.6 Events 43

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Eat meal

Hunger
satisfied

Prepare saladSalad

Desired
components?

Something
real

Fl
at

-s
ha

rin
g

co
m

m
un

ity

C
hr

is
tia

n

Eat meal

Hunger
satisfied

Eat meal

Hunger
satisfied

Fa
lk

o
R

ob
er

t

FIGURE 2.27 Correct lane handling.

P
oo

l

La
ne

 1
La

ne
 2

La
ne

 3 La
ne

 3
.1

La
ne

 3
.2

Start

Task 1

Task 2

Task 3

Task 4

This separator was permissible
only until BPMN version 1.2!

End

FIGURE 2.28 The lane separators between lane header and lane body were allowed only until
BPMN 1.2.

2.6 Events

2.6.1 Relevance in BPMN

Tasks and gateways are two of three flow elements we’ve come to know so far: Things (tasks)
have to be done under certain circumstances (gateways). What flow element is still miss-
ing? The things (events) that are supposed to happen. Events are no less important for
BPMN process models than tasks or gateways. We should start with some basic principles
for applying them. In section 2.2 on page 27, we saw:

■ Catching events and throwing events

■ Start events, intermediate events, and end events

Catching events are events with a defined trigger. We consider that they take place once
the trigger has activated or fired. As an intellectual construct, that is relatively intricate, so

44 2 The notation in detail

we simplify by calling them catching events. The point is that these events influence the
course of the process and therefore must be modeled. Catching events may result in:

■ The process starting

■ The process or a process path continuing

■ The task currently processed or the subprocess being canceled

■ Another process path being used while a task or a subprocess executes

Throwing events are assumed by BPMN to trigger themselves instead of reacting to a trig-
ger. You could say that they are active compared to passive catching events. We call them
throwing events for short, because the process triggers them. Throwing events can be:

■ Triggered during the process

■ Triggered at the end of the process

Start events are therefore events that always occur. The process cannot trigger an event
before it has even started. The simplest application of a start event is shown in figure 2.29.
When the event occurs, the process starts.

?
Event 1

Task 1 ...

FIGURE 2.29 Once event 1 occurs, the process is started.

Note: The question mark in the circle indicates that this event can be allocated to a certain
type. So far, we have only covered none events. The possible event types are explained in
the following sections.

Different events may trigger the process, which could be modeled as shown in figure 2.30.
It is important that each event triggers its own process instance.

?
Event 1

Task 1 ...

?
Event 2

FIGURE 2.30 Once events 1 or event 2 occurs, the process is started.

On the other hand, suppose you want to model several events that have to take place before
the process starts. A lot of people would model this situation as shown in figure 2.31 on the
next page.

This is intuitive, but unfortunately it is not correct, and few BPMN beginners understand
why it is not correct. The reason is that the AND merge does not support the correlation
already mentioned in section 2.1.4 on page 26, so the process will not recognize the two
events as being associated. We will explain this problem in greater detail in section 2.6.14
on page 58, and we will describe how BPMN provides the solution.

The process may require that a specific intermediate event occurs, as shown in figure 2.32.
After task 1 completes, event 1 has to occur before task 2 can complete. With the token

2.6 Events 45

?
Event 1

Task 1 ...

?
Event 2

FIGURE 2.31 Bad: Technically speaking, this model would lead to a deadlock.

approach, the token waits at event 1 until it occurs. Only then does the token continue,
and it starts task 2.

Event 1

Task 1 ? Task 2

FIGURE 2.32 After task 1, the process waits until event 1 has occurred. Only then does it
proceed to task 2.

Note: The none event (as explained in section 2.2 on page 27) is not a catching event. It
belongs to the throwing events.

How can we represent that a process has to wait for two events? What we show in figure 2.33
is flawed. After task 1 completes, the token continues and waits for event 1 to occur. If event
2 occurs while the token is waiting on event 1, the token will not notice it. Even worse, if
event 1 occurs after event 2, the token continues and then waits for event 2 to occur. Since
event 2 already occurred, the token will wait forever.

Event 1

Task 1 ? Task 2

Event 2

?

FIGURE 2.33 Sequential intermediate events can only be recognized one after the other.

The semantics of catching events is therefore not to check for a condition that already may
have been fulfilled, but to treat the catching event as a transitory signal that vanishes im-
mediately after the occurrence. The process therefore can handle the event only if it is in a
ready-to-receive state at exactly the moment it occurs. This details can usually be ignored
in purely functional process modeling, however, it must be adhered to in technical process
modeling (section 6.4.5).

If we need to wait for two events that may occur independently, but both events must occur
before the process can continue, we represent the situation as in figure 2.34 on the next
page.

We can model attached intermediate events with BPMN. These do not explicitly require
waiting, but they do interrupt our activities, both tasks and subprocesses (which will be
discussed later). Such intermediate events are attached because we position them at the
boundary of the activity we want to interrupt. A token running through the process shown
in figure 2.35 would behave this way:

46 2 The notation in detail

Event 1
Task 1

?

Task 2

Event 2

?

FIGURE 2.34 Using the AND gateway to wait for several events at the same time.

■ The token moves to task 1, which starts accordingly.

■ If event 1 occurs while task 1 is being processed, task 1 is immediately canceled, and the
token moves through the exception flow to task 3.

■ On the other hand, if event 1 does not occur, task 1 will be processed, and the token
moves through the regular sequence flow to task 2.

■ If event 1 occurs only after task 1 completes, it ceases to matter.

Event 1

Task 1

?

Task 2

...Task 3

FIGURE 2.35 Event 1 cancels task 1 and starts task 3.

Attached intermediate events do not have to result in canceled activities because of the
non-interrupting intermediate event. It sounds awkward, but it is useful. The token moves
through the process section shown in figure 2.36 on the next page as follows:

■ The token moves to task 1, which starts accordingly.

■ If event 1 occurs while task 1 is being processed, the token is cloned. Task 1 continues to
be processed while the second token moves to task 3, which is now also processed. This
procedure may even take place repeatedly, that is, the event can occur many times. Each
occurrence results in another cloned token.

■ If event 1 does not occur, task 1 will be completed, and the token moves through the
regular sequence flow to task 2.

■ If event 1 occurs only after task 1 completes, it ceases to matter.

Throwing intermediate events are triggered by the process. That means a token occurring
at such an event triggers it, then immediately moves on. Throwing events do not lead to
canceled activities, which is why they can never be attached. They occur only in the se-
quence flow. We already know the none intermediate event, which can be used to model
the entry into a defined status. This is a throwing event too.

In the following sections, we introduce the event types to be used when working with
BPMN. We also explain how you can react to different events using the event-based gate-
way. The event types are:

2.6 Events 47

Event 1

Task 1

?

Task 2

...Task 3

FIGURE 2.36 The occurrence of event 1 results in starting task 3, while task 1 is being further
processed.

■ Message

■ Timer

■ Error

■ Conditional

■ Signal

■ Terminate

■ Link

■ Compensation

■ Multiple

■ Parallel

■ Escalation

■ Cancel

2.6.2 Message events

Sooner or later, most processes require communication, which can be represented in
BPMN by means of the message event. You’ll recognize it as the small envelope. The
general application of the message event is shown in figure 2.37 on the following page.

Intermediate
(catching)

Start Intermediate
(throwing)

Attached
(interrupting)BPMN 2.0: Attached

(non-interrupting)

End

FIGURE 2.37 Applying the message event.

The meaning of message in BPMN is not restricted to letters, e-mails, or calls. Any action
that refers to a specific addressee and represents or contains information for the addressee
is a message. In figure 2.38 on the next page for example, the pizza ordering issue has
been fully modeled: We choose a pizza, and we order it. We then wait for the pizza to be
delivered. After delivery, we eat. Notice that there is no order pizza task.

48 2 The notation in detail

Choose pizza Eat pizza

Hunger noticed
Pizza

ordered
Hunger
satisfied

Pizza
received

FIGURE 2.38 Ordering and getting pizza as a message event.

What’s shown in figure 2.39 on the following page would in fact be wrong: The throwing
intermediate event pizza ordered implies that we have ordered a pizza. If a corresponding
task were added, it would result in a double definition and therefore be meaningless.

Choose pizza Eat pizza

Hunger noticed
Pizza

ordered
Hunger
satisfied

Pizza
received

Order pizza

FIGURE 2.39 Wrong content: According to this process model, we would order the pizza twice.

In figure 2.40, we show a message leading to cancellation. In this scenario, we administer a
web application. When a user notifies us that the website does not work, we immediately
search for the error. But maybe the user is mistaken, and the website is fine. Maybe the
user’s Internet connection is defective. If the user tells us about the false alarm, we cancel
the search and swear at the user for wasting our time. If the error is actually found, however,
we eliminate it and simultaneously figure out who caused the error. If the user caused the
error, we can swear at the user for a different reason. If the user is not at fault, however, we
thank him or her graciously for letting us know about the problem.

2.6 Events 49

Search for error

User reports:
The website

broke down!
User reports:
Sorry, false alarm! Swear at user

Eliminate error Thank the userNo

fault?

Yes User thanked

User sworn at

FIGURE 2.40 The attached message event results in the cancellation of the task Search for
error.

Choose pizza Eat pizza

Hunger noticed Hunger
satisfied

Pizza
received

Order pizza

FIGURE 2.41 Our convention: tasks for sending, events for receiving messages.

Our modeling etiquette

We are not always happy with the throwing intermediate event. Implying a send message
task without modeling it explicitly can easily confuse inexperienced consumers of our
models. We choose not to use throwing intermediate events for messages and instead
use a task. (See figure 2.41.) In section 2.7 on page 61, we explain that there are special
BPMN task types for sending and receiving messages.

2.6.3 Timer events

The timer event is often used when working with BPMN because it is so flexible to apply.
A clock icon represents the timer event. You can see it applied in figure 2.42. You can use
timer events to start processes:

■ Once, at a scheduled time

■ Repeatedly at scheduled times

■ At timed intervals

Intermediate
(catching)

Start

Attached
(interrupting)BPMN 2.0: Attached

(non-interrupting)

...

FIGURE 2.42 Applying a timer event.

50 2 The notation in detail

■ Relative to other events

As an intermediate event, a timer event can stop a process until:

■ A scheduled time arrives.

■ A defined span of time has elapsed.

■ A time relative to another event expires.

Figure 2.43 on the next page shows a few examples of applications. Time moves on no
matter what we or our processes do, so timer events can exist only as catching starts or
intermediate events.

Monday-Friday
At 07:00 a.m.

Get up

W
or

k
da

y

Two months
before trip starts

Choose
destination

V
ac

at
io

n

Every 2 hours

Check
incoming e-

mails

U
se

r s
up

po
rt

Use the
bathroom ...Take bus to

work

...Attend to most
pressing issue

Book trip ...Pack suitcases

Two days before
trip starts

08:00 a.m.

Screen for
most pressing

issue
Coffee break
(10 minutes)

2/14/2014
08:00 a.m.

Get up

20
14 Buy flowers ...Wake partner

up with flowers
2/14/2014
09:00 a.m.

FIGURE 2.43 Examples of timer events.

You can model countdown times with an attached timer event. They are used this way
frequently. You can specify upper time limits —the maximum time allowed for a processing
task —for instance. Figure 2.44 on the following page shows a process in which a task may
take a maximum of 30 minutes. If the time expires before the task completes, the choose
pizza task is canceled, and we cook pasta instead. In either case, we eat the meal at the end.

Timer events can be non-interrupting. Figure 2.45 on the preceding page shows another
example of this. Before we can eat, we have to prepare the meal and set the table, but we
only start setting the table 10 minutes before the meal is ready.

2.6 Events 51

Choose pizza

Hunger
noticed

30 minutes

Order pizza

Pizza received

Eat meal

Cook pasta

Hunger
satisfied

FIGURE 2.44 The timeout for the choose pizza task is 30 minutes.

Choose recipe

Hunger
noticed 10 minutes

before finishing

Prepare meal Eat meal

Set the table

Hunger
satisfied

FIGURE 2.45 You can attach timer events that do not lead to cancellation, but instead generate
another token.

2.6.4 Error events

Do your processes run completely error-free? If not, you can identify potential errors in
your models as a step toward eliminating them, or as part of modeling escalation pro-
cesses. In BPMN, error events are represented by a flash symbol. Apply them as shown
in figure 2.46.

Attached
(interrupting) ...

...

End

FIGURE 2.46 Applying an error event.

The BPMN specification does not specify what an error may be. As the modeler, you have
to decide that. Section 4.5.1 on page 134 has some hands-on tips.

An error is a serious event in BPMN, so it can be modeled only as an attached intermediate
event. This means that an error during task execution must be handled in a specific way: As
a throwing event, it can be modeled only at the end of a process path so that the participant
knows the process has failed. The parent process should likewise recognize the failure. (We
explain the interaction between parent and subprocesses in section 2.8 on page 66. You’ll
also find an example of applying an error event there.)

52 2 The notation in detail

2.6.5 Conditional

Sometimes we only want a process to start or to continue if a certain condition is true.
Anything can be a condition, and conditions are independent of processes, which is why
the condition (like the timer event) can only exist as a catching event (figure 2.47).

Intermediate
(catching)

Start

Attached
(interrupting)

BPMN 2.0: Attached
(non-interrupting)

...

FIGURE 2.47 Applying a conditional event.

We can enhance our pizza process with conditions. If we want to have frozen pizza, the
process starts as shown in figure 2.48 on the next page. We take the pizza from the freezer
and turn on the oven. But we only put the pizza in after the temperature in the oven reaches
180 ◦ C, and we only take it out to eat after it is done.

Start oven Put pizza into
oven

Frozen pizza
wanted

Hunger
satisfied

Oven at
180°C

Take pizza out
of freezer

Pizza done

Eat pizza

FIGURE 2.48 Baking pizza under fully modeled conditions.

If we know how long the pizza needs to cook, we can specify this in the process model by
substituting a timer event for the last conditional event. The whole thing would then look
as shown in figure 2.49.

Start oven Put pizza into
oven

Frozen pizza
wanted

Hunger
satisfied

Oven at
180°C

Take pizza out
of freezer

20 minutes

Eat pizza

FIGURE 2.49 Baking pizza with indicated baking time.

2.6.6 Signal events

Signals are similar to messages, which is why you can model them in BPMN as events just
as you can with messages (figure 2.50). The symbol for a signal is a triangle. The essen-
tial difference between a signal and a message is that that latter is always addressed to a
specific recipient. (An e-mail contains the e-mail address of the recipient, a call starts with
dialing the telephone number, and so on.) In contrast, a signal is more like a newspaper
advertisement or a television commercial. It is relatively undirected. Anyone who receives
the signal and wants to react may do so.

We saw a new frozen pizza on TV, and we are keen to try it. Figure 2.51 illustrates this new
situation.

2.6 Events 53

Intermediate
(catching)

Start Intermediate
(throwing)

Attached
(interrupting)BPMN 2.0: Attached

(non-interrupting)

End

FIGURE 2.50 Applying the signal event.

Buy pizza

Pizza TV ad
seen

In the mood for
pizza

Eat pizza

Rated pizza on
Pizzatest.de

FIGURE 2.51 Pizza signals.

We buy the pizza, but we keep it in the freezer until we’re really hungry for pizza. That’s a
conditional event. After trying the new pizza, we go to Pizzatest.de to rate the new product.
That’s a signal. It is a signal for the general public too. (Pizzatest.de actually exists, by the
way, which proves again that you can find simply everything on the Internet!)

2.6.7 Terminate events

Let’s look at the abstract example in figure 2.52. We already discussed (simple) Key Per-
formance Indicator (KPI) analysis in section 2.3.2 on page 30, and we therefore know that
this process always takes 55 minutes. After task 1, tasks 2 and 3 can be processed simul-
taneously. Processing task 2 takes more time than does processing task 3, which is why it
determines the runtime of the process. A token that runs through the process is cloned in
the AND split. The first token stays in task 2 for 45 minutes; the second token stays in task
3 for 30 minutes. The second token arrives at the none event first, where it is consumed.
After 15 more minutes, the first token arrives at the upper none event, where it is consumed
too. Since no more tokens are available, the process instance finishes after 55 minutes.

Task 1

Start

End 1

Task 2

Task 3

45 minutes

30 minutes

End 2

10 minutes

FIGURE 2.52 The process always takes 55 minutes.

So far, so good, but what happens if we already know that, after having completed task 3,
task 2 has become redundant? This is a frequent situation with parallel task executions
related to content. In such cases, we can apply the pattern shown in figure 2.53.

54 2 The notation in detail

Task 1

Terminate

Start

End 1

Task 2

Task 3

Task 2
invalid?

45 minutes

30 minutes

Yes
End 2

No10 minutes

FIGURE 2.53 Potentially, the process terminates immediately after task 3 completes.

We use the terminate event to make sure that all available tokens are consumed immedi-
ately. That leads to the termination of the process instance, consequently, you can use the
terminate event as an end event only. (See figure 2.54 on the following page.)

...

End

FIGURE 2.54 Applying a terminate event.

2.6.8 Link events

The link event is a special case. It has no significance related to content, but it facilitates
the diagram-creation process. As shown in figure 2.55, you can draw two associated links
as an alternative to a sequence flow. Here, associated means there is a throwing link event
as the exit point, and a catching link event as the entrance point, and the two events are
marked as a pair —in our example by the designation A. Sometimes we use color coding to
mark the association.

Task 1 Task 2

Task 1

=
Task 2

A A

...

... ...

...

FIGURE 2.55 Associated link events can replace a sequence flow.

Link events can be very useful if:

■ You have to distribute a process diagram across several pages. Links orient the reader
from one page to the next.

■ You draw comprehensive process diagrams with many sequence flows. Links help avoid
what otherwise might look like a spaghetti diagram.

2.6 Events 55

Link events can be used as intermediate events only (figure 2.56).

Intermediate
(throwing)

Intermediate
(catching)

......

FIGURE 2.56 Applying a link event.

2.6.9 Compensation events

In practice, we apply compensation icons (see figure 2.57 on the next page) only to trans-
actions even though BPMN permits other uses. (See section 2.8.5 on page 74.) We exe-
cute tasks in our processes that sometimes have to be canceled later under certain circum-
stances.

Task 1

Intermediate
(throwing)

Attached

End

...

Compensate
Task 1

Throwing compensation
event acts within

the process

Compensation is a
special task typeAssociation

FIGURE 2.57 Applying a compensation event.

Typical examples are:

■ Booking a train or airline ticket

■ Reserving a rental car

■ Charging a credit card

■ Commissioning a service provider

In figure 2.58, we see this process: On Friday at 1 p.m. we agree with our partner either
to go to the theater or to spend the evening with friends. In both cases, we have to do
something binding, either to reserve the theater tickets or make the arrangements with our
friends. When evening arrives, perhaps we no longer feel like going out at all. We then have
to cancel the arrangements we made with the theater or our friends before we can collapse
in front of the TV in peace.

We can represent the latter part of the model more compactly with a compensation event,
as shown in figure 2.59 on the following page. If we don’t feel like going out, we have to
cancel all our arrangements; we don’t have to check which ones to cancel.

There are special rules for handling compensations:

56 2 The notation in detail

Friday
1300

Yes
Arrange to

meet partner Perform actionReserve tickets

Friday
1800

Still in the
mood?

No

Agree To
appointment

Theater

Friends

Planned
action?

What was
planned?

Cancel ticketsTheater

Cancel
appointment

Friends

Watch TV

FIGURE 2.58 A possible process for the weekend.

Friday
1 p.m.

Yes
Arrange to

meet partner Perform actionReserve tickets

Friday
6 p.m.

Still in the
mood?

NoCancel tickets

Arrange
appointment

Theater

Friends

Planned
action?

Action
canceled

Watch TV

Cancel
appointment

Action canceled

Action canceled

FIGURE 2.59 The same process as shown in figure 2.58 on the previous page, applied to the
compensation event.

■ Throwing compensations refer to their own processes, so the event is effective within the
pool. This shows how this event type differs from a throwing message event.

■ Other attached events can take effect only while the activities to which they are attached
remain active. In contrast, an attached compensation takes effect only if the process trig-
gers a compensation and the activity to which the compensation is attached successfully
completes.

■ Attached compensation events connect to compensation tasks through associations,
and not through sequence flows, which would otherwise be common usage. BPMN thus
emphasizes that compensations are beyond the regular process sequence; executing one
is an exception.

■ The obligatory compensation task is a special task type that we explain with other task
types in section 2.7 on page 61.

Our modeling etiquette

This example may be too simple to illustrate how much work this construct can save
you. If you think of the complex business processes that frequently require compensa-
tions, however, you’ll see how much leaner your models can be. You’ll also be quick

2.6 Events 57

to spot the circumstances that demand compensations. We use compensation events
only occasionally to describe complex processes.

2.6.10 Multiple events

Intermediate
(catching)

Start Intermediate
(throwing)

Attached
(interrupting)BPMN 2.0: Attached

(non-interrupting)

End

FIGURE 2.60 Application of the multiple event.

We can use the multiple event (figure 2.60) to summarize several events with a single sym-
bol. The semantics are simple:

■ If we model the multiple event as a catching event, only one of the summarized events
has to occur to start or continue the process or to cancel the task.

■ If we model a multiple event as a throwing event, it means that all of the summarized
events are triggered.

Figure 2.61 applies the multiple event to our pizza scenario. In the example, we try a new
pizza after having seen it on TV or after a friend recommended it. After eating it, we will rate
the pizza on Pizzatest.de and in turn inform our friend if we also recommend this pizza.

Buy pizza

Seen pizza TV ad
or a friend has

recommended a new
pizza

In the mood
for pizza

Eat pizza

Rated pizza on
Pizzatest.de

and sent rating to
friends

FIGURE 2.61 The multiple event summarizes events.

The model in figure 2.62 describes the same process, but the events are fully modeled.

Buy pizza
Pizza TV ad

seen

In the mood for
pizza

Eat pizza
Rated pizza on

Pizzatest.de

Friend has
recommended

a new pizza

Sent rating to
friends

FIGURE 2.62 An alternative for figure 2.61

58 2 The notation in detail

Our modeling etiquette

You have to decide if multiple events serve your purposes. We concede their benefit in
rough functional process descriptions, but they cease to be as useful in the more ad-
vanced technical-implementation phase. You can’t afford to leave relevant details hiding
in the descriptive text. We don’t find the multiple event to be intuitive, nor is it helpful
on a functional level. It may make your diagrams larger to model all events separately,
but the resulting diagrams will be both more comprehensive and more comprehensible.
The bottom line is that we have never used this symbol in practice, nor have we seen
anybody else doing so.

2.6.11 Parallel events

The parallel event (see figure 2.63 on the next page) supplements the multiple event. While
a catching multiple event has XOR semantics —it occurs as soon as one of its contained
events occurs —the parallel event uses AND semantics. It doesn’t occur until all of its con-
tained events occur. Because the throwing multiple event already implies AND semantics,
the specification defines parallel events as catching events only.

Intermediate
(catching)

Attached
(interrupting)Attached

(non-interrupting)

Start

...

FIGURE 2.63 Application of the parallel event.

2.6.12 Escalation events

The escalation event (see figure 2.64) shows communication between parent and subpro-
cesses. We discuss it in section 2.8 on page 66 with the help of an example.

Attached
(interrupting)Attached

(non-interrupting)

...
Intermediate

(throwing)
End

FIGURE 2.64 Applying an escalation event.

2.6 Events 59

2.6.13 Cancel events

You can use the cancel event only in the context of the transactions we discuss in sec-
tion 2.8.5 on page 74. That section also has examples of applying this event type.

2.6.14 Event-based gateway

We learned about the exclusive data-based (XOR) gateway option in section 2.3.1 on
page 28 as a way to use different paths without regard to the data being processed. In
figure 2.65 on the facing page, we had to choose a recipe (pasta, steak, or salad) first, and
depending on result of the choose recipe task, the XOR gateway routed us to the cook pasta,
or cook steak, or prepare salad task accordingly.

Hunger
noticed

Data-based
exclusive gateway

(splitting)

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Pasta
done

Steak
done

Prepare saladSalad

Salad
done

FIGURE 2.65 An XOR gateway decides routing based on available data.

Users of other process notations recognize this type of branching, but BPMN gives us an-
other way to design process paths: the event-based gateway —event gateway, for short.
This gateway does not route based on data, but rather by which event takes place next. To
understand the benefit, consider the process shown in figure 2.66 on the next page: We or-
der pizza and wait for it to be delivered. We can eat only after we receive the pizza, but what
if the pizza doesn’t arrive after 60 minutes? We’ll make an anxious phone call, that’s what!
We can model this with the event gateway (figure 2.67). Now, in contrast to the data-based
XOR split, the token waits at the event gateway for one of the subsequent events to occur.
Once any one event occurs, the token takes the respective path. If other events then take
place, they are ignored. This is XOR semantics.

Choose pizza Eat pizza

Hunger noticed Hunger
satisfied

Pizza
received

Order pizza

FIGURE 2.66 According to this model, we may wait forever for pizza to be delivered.

60 2 The notation in detail

Choose pizza Eat pizza

Hunger noticed Hunger
satisfied

Pizza
received

Order pizza

60 minutes

Inquire at pizza
delivery service

Pizza
received

FIGURE 2.67 After the gateway, the path that receives the event first is used.

As you can see in figure 2.68 on the next page, not all intermediate events combine with
the event gateway. You can, however, combine it with the receive task, which we discuss in
section 2.7 on page 61.

Message

Timer

... ...

...

...

Condition

Signal

...

...

Multiple

Receive task ...

FIGURE 2.68 Applying an event-based exclusive (XOR) gateway.

As an instantiating gateway, the event gateway can be used to start a process. You can
combine them with other events to trigger a process and, as shown in figure 2.69 on the
next page, they can be merged through XOR merges.

Our modeling etiquette

We find it cumbersome and non-intuitive to modeling start events with event gateways.
Instead, we use XOR merges without event gateways.

2.6 Events 61

?
Event 1

Task 1 ...

?
Event 2

?

?

Task 1 ...

=Event-based
exclusive

gateway to start
process

Event 1

Event 2

FIGURE 2.69 The event gateway can be a starting point, but it must be of the instantiating type.

2.6.15 Event-based parallel gateway

There is a variation on the event gateway: the event-based parallel gateway. Use of this
symbol expresses that all subsequent events have to occur before a process can be started
completely. It therefore provides correlation not provided by the simple AND merge.

?

?

Task 1 ...

BPMN 2.0:
Event-based

parallel gateway
to start process

Event 1

Event 2

?
Event 1

Task 1 ...

?
Event 2 =

FIGURE 2.70 The lower model works, the upper one (strictly speaking) does not.

The lower model shown in figure 2.70 causes the following behavior:

■ If event 1 occurs, the process instance is started and a token is born.

■ The new token waits at the AND merge.

■ If event 2 occurs, the related process instance already started is identified. (This is cor-
relation.) At event 2, another token is born.

■ The second token also moves to the AND merge, where it merges with the first token.
Only a single token leaves by the outgoing path.

62 2 The notation in detail

The upper model shows that the allocation to the running process instance would not be
carried out. Instead, two isolated instances start in which a token waits forever at each AND
merge. This strict correlation semantics of BPMN doesn’t always further the goal of making
process models easy to understand!

2.7 Special tasks

2.7.1 Typification

So far, we have used only tasks of undefined types, though BPMN provides the opportunity
to work with task types just as it does for event types. Primarily, task types are intended
to model processes that are technically executable. Task types are applied infrequently in
practice. We know from experience, however, that task types can be particularly useful
when modeling engineering requirements.

Manual

User

Receive

Send

Script

Business rule

Undefined

ServiceReceive
(instantiating)

FIGURE 2.71 Task type symbols in BPMN.

2.7 Special tasks 63

Types of tasks include:

■ Manual

■ User

■ Service

■ Receive and send

■ Business rule

■ Custom

Manual tasks: Tasks executed by a human being that do not affect the completion of a task
assigned by the workflow engine. All the tasks from our various pizza processes are manual
types.

Other examples:

■ File a document in a folder

■ Clarify an incorrect invoice by phone

■ Talk with customers at the counter

User tasks: User tasks are executed by people too, but they are assigned by a workflow
engine, which may, for example, place these tasks in each user’s task list. After the human
finishes a task, the engine expects confirmation, usually including data input or a button
click. User tasks are part of the Human Workflow Management.

Typical task examples from the world of Human Workflow Management are:

■ Check an invoice

■ Approve an application for vacation

■ Process a support request

Service tasks: Service tasks are those done by software. These are program functions ap-
plied automatically as a process executes. BPMN normally assumes that this function is
provided as web service, though it can be another implementation. The service task is a
component of process-oriented implementation integration, which explains why it is so
similar in concept to Service-Oriented Architecture (SOA).

Typical examples from the world of implementation integration are:

■ The credit rating provided by a rating agency, obtained as XML through HTTP during a
credit check

■ Booking an invoice received as EDIFACT through X.400 in SAP R/3

■ The offer of substandard goods by an online auction house, as a web service

Receive and send tasks: Receiving a message can be modeled as a separate task. This task
type is an alternative to the catching message event, which is why the symbol for the event
defined in BPMN is an empty envelope. If a receive task is to instantiate a process, that
is, the receive task replaces the message start event, this is shown by a small event symbol
in the top left corner. The same principle applies to send tasks. These tasks are techni-
cal, and the workflow engine executes them. Therefore, they mainly are used for calling
web services asynchronously through message queues and accepting service requests for
asynchronous processing.

Script tasks: Scripts execute directly in the workflow engine, so they must be written in a
language that the workflow engine can interpret.

64 2 The notation in detail

Business rule tasks: This task type is used solely to apply business rules. We discuss this
further in section 4.5.6 on page 144 and section 6.2.5 on page 174.

Custom task types: You can define your own task types with individual symbols to cus-
tomize your diagrams and to make them express conditions in your organization better.
Your BPMN tool must provide this option, of course. We have yet to encounter anyone who
has done this —most people don’t even know it’s possible. Even so, we can imagine task
types for:

■ Phone calls

■ Signatures

■ Approvals or rejections

■ Archiving

2.7.2 Markers

In addition to those various types of tasks, we can mark tasks as loops, multiple instances,
or compensations. Markers can be combined with the assigned types.

Loops
A loop task repeats until a defined condition either applies or ceases to apply. Perhaps we
suggest various dishes to our dinner guests until everyone agrees. Then, we can prepare
the meal (figure 2.72).

Prepare meal

Time for dinner
Meal

prepared

Suggest dish

Until everyone agrees

FIGURE 2.72 We keep suggesting dishes until everyone agrees with a suggestion.

Do we absolutely need the loop symbol for this process model? No, we could just model
a return with gateways, without gateways, or both. We discussed these methods in sec-
tion 2.3 on page 28 and section 2.4 on page 38. It becomes a question of which alternative
in figure 2.73 you prefer, because they all are equally correct syntactically, and they are
semantically identical to the process shown in figure 2.72 on the previous page. Depend-
ing on what you choose (the loop symbol, gateways, or conditional flows), apply it in your
models in a standardized way.

In the example, we executed the task first and checked afterwords to see if we needed it to
execute again. Programmers know the principle as do-while loop. However, we can also
check for a condition before the task instead of afterward. This occurs rarely, but it makes
sense if the task may not execute at all.

You can attach the condition on which a loop task executes for the first time or, as shown
in the example, apply the condition on repeated executions as an annotation to the task.
You can store this condition as an attribute in a formal language of your BPMN tool as well.
That makes sense if the process is to be executed by a workflow engine.

2.7 Special tasks 65

Prepare meal

Time for dinner
Meal

prepared

Suggest dish

A
lte

rn
at

iv
e

1

Yes

No

Does everyone
agree?

Prepare meal

Time for dinner
Meal

prepared

Suggest dish

A
lte

rn
at

iv
e

2

Yes

No

Does everyone
agree?

Prepare meal

Time for dinner
Meal

prepared

Suggest dish

A
lte

rn
at

iv
e

3

Everyone agrees

Prepare meal

Time for dinner
Meal

prepared

Suggest dish

A
lte

rn
at

iv
e

4

Everyone agrees

FIGURE 2.73 All four variations represent the same process as in figure 2.72 on the preceding
page.

Multiple task
The individual cycles of a loop task must follow each other. If for example we live in a flat-
sharing community and the roommates feel like eating pizza, the choose pizza task must
be repeated for each roommate before we can order. You’d sit together and pass a menu
around until finally everyone has made a decision. There are student apartments where
they do handle it like that —more evidence that students have too much time on their
hands! It is much more efficient for all roommates to look at the menu at once, and they
choose a pizza together. You can model this process using the multiple task (figure 2.74). A
multiple task instantiates repeatedly and can be executed in sequence or in parallel, with
the latter being the more interesting case.

Order pizzas

Roommates
want to eat

pizza

Pizzas
ordered

Choose pizza

Each roommate

FIGURE 2.74 Using the multiple task to make tasks dynamically parallel.

66 2 The notation in detail

Do you think the example is absurd? How does your company check invoices for group
orders, such as for office supplies? Do you forward the invoice from one employee to the
next, so that each person can sign off on the items he or she ordered, before you pay the
invoice? If so, you live in a flat-sharing community, and you urgently should consider opti-
mizing your process. Automating invoices is still one of the top BPM projects, and the top
goal of such projects often is one of parallelization.

Compensation
We explained the benefit of the compensation event in section 2.6.9 on page 54 by means
of an example. The compensation task type is applied exclusively in the context of a com-
pensation event. Accordingly, it is integrated in the process diagram only by associations,
never by sequence flows.

Book trip

Cancel trip

Call until the travel agency is
exasperated and gives in

Manual loop
compensation

... ...
Invite all friends

by circular e-
mail

Call everyone to
cancel invitation

Manual multiple
compensation

... ...

FIGURE 2.75 The compensation and loop/multiple markers can be combined both with each
other and with task types.

The possible combination of the compensation with a loop or multiple instance as shown
in figure 2.75 is worth mentioning. In this case, both markers are placed in parallel. As
with the other markers, the compensation can be combined with the task types already
introduced. A manual compensation task that repeats until it succeeds or that executes
repeatedly and in parallel as far as possible (figure 2.75), is therefore eminently practical.

2.7.3 Global tasks and call activity

Global tasks differ from the regular tasks in that you can reference them by means of a
call activity. Call activities have a thicker frame than other activities, as the diagram in
figure 2.76 shows.

2.8 Subprocesses
2.8.1 Encapsulate complexity

The examples in this book either deal with simple processes, or they diagram complex pro-
cesses superficially so that the models fit on one page. When modeling your process land-
scape, you don’t have this luxury. You have to rough out your processes so that you can get

2.8 Subprocesses 67

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Eat meal

Hunger
satisfied

Prepare saladSalad

Desired
components?

Something
real

Fl
at

-s
ha

rin
g

co
m

m
un

ity

C
hr

is
tia

n

Eat meal

Hunger
satisfied

Eat meal

Hunger
satisfied

Fa
lk

o
R

ob
er

t
Global task

Call activity

Call activity

FIGURE 2.76 The process from figure 2.27 on page 43 as it had to be represented in BPMN
correctly.

the general ideas in place and recognize correlations. Then you have to develop a detailed
description, so that you can analyze exactly where the weak points are or how you’ll have to
execute the process in practice. The possible top-down refinements or bottom-up aggre-
gations mark the difference between true process models and banal flow charts, between
sophisticated BPM software products and mere drawing programs.

BPMN provides us with the subprocess to help with the expanding/collapsing view. A sub-
process describes a detailed sequence, but it takes no more space in the diagram of the
parent process than does a task. Both tasks and subprocesses are part of the activities class
and are therefore represented as rectangles with rounded corners. The only difference is
the plus sign, indicating a stored detailed sequence for the subprocess. (See figure 2.77 on
the next page.)

Subprocess

Start End

Task

P
ar

en
t p

ro
ce

ss

FIGURE 2.77 A task and a subprocess.

What good is that to us? That depends most on how your BPMN tool supports the following
options for connecting subprocesses with their parent processes:

■ Representation in a separate process diagram: The subprocess symbol links to a sep-
arate diagram. If your BPMN tool displays the process model in a web browser, for in-
stance, clicking on the symbol would open a new page to display the detail diagram. (See
figure 2.78 on the facing page.)

■ Expanding in the process diagram of the parent process: The activity with the plus sign
is called a collapsed subprocess. The plus sign suggests that you could click on it and
make the subprocess expand. The BPMN specification provides for this option, though
not all tool suppliers implement it. Figure 2.79 on the next page shows how the sub-
process was directly expanded in the diagram of the parent process. A tool supporting

68 2 The notation in detail

Subprocess

Start End

Task
P

ar
en

t p
ro

ce
ss

Start End

Task Task

CLICK!

FIGURE 2.78 The details of the subprocess are shown in a separate diagram.

this function enables you to expand and collapse the subprocess directly in the diagram,
respectively, to show or hide details.

Start End

Task

P
ar

en
t p

ro
ce

ss

Start End

Task Task

Subprocess

The minus sign is not part of
the standard but included in

many tools.

FIGURE 2.79 The subprocess expands directly in the diagram of the parent process.

Direct expansion may seem appealing, but often it is not useful in practice. Expanding the
subprocess requires that all the adjacent symbols in the diagram shift to make room. This
can result in sluggish performance with a complex diagram, and it can be visually . . . nasty.
The most important thing is that your tool provides for linking and that you can usefully

2.8 Subprocesses 69

navigate through the diagrams. In other words, it supports the first option above. Yes, it
can be helpful to have your subprocess modeled and expandable directly from the parent
process. That means process segments remain localized, and you can attach events too
(see section 2.8.3 on page 71). This is, however, the less important option.

The sequence flow of the parent process ends in both cases at the left edge of the subpro-
cess. The next sequence flow starts at the right edge. This means that sequence flows are
not allowed to exceed the boundaries of the subprocess, which not every beginner knows,
and which becomes a problem when a subprocess expands.

Visualize a token that behaves as follows:

■ The parent process starts, and a token is born.

■ The token runs through the task and arrives at the subprocess, which causes the parent
process to create an instance of the subprocess.

■ Within the subprocess, a separate token is born which runs through the subprocess from
the start to the end event, but the token of the parent process waits until the subprocess
completes.

■ When the subprocess token arrives at the end event, it is consumed, which completes
the subprocess. Now the token of the parent process moves to its own end event.

The encapsulation in subprocesses that we’re describing isn’t restricted to two levels. You
could just as easily have a parent process as a subprocess, or you could model further sub-
processes on the level of a defined subprocess. How many levels you use and the level of
detail you apply to model them is up to you. BPMN doesn’t specify this, and there can be
no cross-company or cross-scenario cookbook to define levels. Participants in our BPMN
workshops don’t like this, but there’s no point in hiding the fact nor attempting to explain
it away. In the following chapters, we work often with subprocesses in explaining our best
practices, but the truth is the number of refinement levels and their respective levels of
detail is always situational. It depends on the organization, the roles of the project partici-
pants, and the goals for the process you’re modeling.

You may remember that we explained in section 2.2 on page 27 that you can work without
start and end events. Without them, you can make the parallelization shown in the top
part of figure 2.80 on the facing page somewhat more compact. In this example, start and
end events were used in the parent process, but not in the expanded subprocess. That’s
completely legitimate, but we don’t do this ourselves for two reasons:

1. It increases the risk of confusing inexperienced consumers of the model.

2. It is easy to confuse the representation with the ad hoc subprocess to be introduced later
in the book. We use that a lot.

The example shows that subprocesses in BPMN practice are used not only to refine pro-
cesses in terms of content; they are also a "technical stylistic device" for creating diagrams.
The following sections illustrate this.

2.8.2 Modularization and reuse

In version 1.2, BPMN differentiated between embedded and reusable subprocesses by as-
signing an attribute to a subprocess. In version 2.0, BPMN maintains this differentiation in

70 2 The notation in detail

Start End

Task 2

Task 3

Task 4

=

Task 1

Start End

Task 2

Task 3

Task 4Task 1

FIGURE 2.80 A subprocess can be used to replace the AND gateways.

principle, but it is defined differently. A subprocess now is embedded intrinsically, and it
can be reused only by defining it as a global subprocess, and then referencing it by means
of a call activity. We therefore refer to embedded subprocesses and global subprocesses in
the following.

An embedded subprocess can occur only within a parent process to which it belongs. An
embedded subprocess cannot contain pools and lanes, but it can be placed within the pool
or the lane of the parent process. Furthermore, an embedded subprocess may have only a
none start event; start events such as messages or timers are not permitted. An embedded
subprocess has essentially nothing more than a kind of delimited scope within the parent
process, which may serve two goals:

1. To encapsulate complexity (as already described)

2. To formulate a "collective statement" on a part of the parent process by attaching events
or placing markers. We deal with this option later.

On the other hand, global subprocesses may occur in completely different parent pro-
cesses. There are a great many subprocesses that, in practice, are used over and over. A
good example is the procurement of an item because a customer ordered it or you need
to re-stock supply. Another example is invoicing because you’ve delivered or repaired an
item as shown in figure 2.81. In the example, notice that call activities differ from regular
activities by their considerably thicker borders.

The connection a global subprocesses has to its parent is considerably less close, and they
can have their own pools and lanes. You can think of the participant responsible for a
subprocess as a service provider for various parent processes. It is a like a shared service
center.

The loose connection also affects data transfer between the parent and the subprocess.
BPMN assumes that embedded subprocesses can read all the data of the parent process
directly, but an explicit assignment is required for global subprocesses to be able to read it.
That may seem like merely a technical aspect at first, one that modelers and the consumers
of their models care to know about but won’t wish to bother with. After some consideration,

2.8 Subprocesses 71

Order
received

End

Check
availability

O
rd

er
 p

ro
ce

ss
in

g

Item
procurement

Dispatch item Financial
processing

Yes

No

Item available?

S
to

ck
 m

ai
nt

en
an

ce

Below minimum
stock level of

item

Item
procurement

Item
procured

R
ep

ai
r

Repair order
received

Financial
processing

End

Ite
m

 p
ro

cu
re

m
en

t

Start

Place order ...

Fi
na

nc
ia

l p
ro

ce
ss

in
g

Start

Issue invoice

...

...

Payment
received

Date of payment
exceeded

This arrow is not a BPMN
symbol, it only illustrates the

example.

Carry out repair

FIGURE 2.81 Examples of reusing subprocesses.

however, you may see the impact this difference makes on the organization. Consider this:
When your accounting department wants to issue an invoice for a repair, it always needs:

■ A billing address

■ The date of performance delivery

■ A description of performance

■ An amount to invoice

■ An expected date of payment

The owners of order processing, not just the repair department, must provide this data.
Accounting will want the data in a standard format, won’t it? This corresponds well to what
BPMN calls required data mapping between parent processes and global subprocesses.
(Do you notice how often these weird techie issues correspond to the organizational needs
and expectations of a process?) BPMN simply forces us to formalize many matters that
seem self-evident, or that remained unconscious or forgotten in the process design. For-
malization is our best chance of keeping up in a fast-changing environment with ever more
complex processes.

2.8.3 Attached events

We already learned about intermediate events that can be attached to tasks. The same
events can be attached to subprocesses as well, which opens up a wide range of opportu-
nity in process modeling. As shown in figure 2.82, we can represent how a spontaneous
dinner invitation leads to canceling our cooking process. In the process shown, however,
we could ignore the invitation if our meal had already been prepared and we already ate it.

72 2 The notation in detail

Received
invitation to

dinner

Choose recipe Eat meal

Hunger noticed

Hunger
satisfied

Prepare meal

Go out for
dinner

FIGURE 2.82 The catching event cancels the entire subprocess.

Where message, timer, and conditional events are involved, the parent process always
aborts the subprocess when reacting to external circumstances. With error, cancellation,
and escalation events, however, the subprocess reports these events to the parent process.
This isn’t as abstract as it may sound.

In the bottom right of figure 2.83 on the next page, the item procurement task can fail be-
cause the item is no longer available. Because item procurement is a global subprocess, it
triggers an error event to tell the parent process that something went wrong. In business
terms, this may mean that the customer who wanted to buy the item tells a salesperson
that his or her order failed because the item is out of stock. A clerk then orders more of the
item to replenish inventory.

Order
received

End

Check
availability

O
rd

er
 p

ro
ce

ss
in

g

Item
procurement

Dispatch item Financial
processing

Yes

No

Item available?

S
to

ck
 m

ai
nt

en
an

ce

Below minimum
stock level of

item

Item
procurement

Item
procured

Ite
m

 p
ro

cu
re

m
en

t

Start

Place order

Not
available

Not
available

Inform
customer

Available?

Expect deliveryYes

No

Not
available

...

End

Delete item
from catalog

Item
deleted

Delete item
from catalog

FIGURE 2.83 The subprocess reports an error to its parent.

It is interesting that parent processes can handle the error message differently. While the
disappointed customer must be informed within the scope of the order process, it is suffi-
cient for the stock maintenance process to delete the item from the catalog. The respective
parent processes decide what circumstances require canceling the subprocess and what

2.8 Subprocesses 73

happens next. That’s a principle that you can use to build flexible and modular process
landscapes.

The signal event serves two functions. A parent process can react to a signal received from
the outside while it executes a subprocess —this is much like a message event. But we
also use the signal event to let the subprocess communicate things other than errors to the
parent process. Primarily, this is because we can’t model this type of communication with
message events. BPMN assumes that we always send messages to other participants who
are outside of our pool boundaries; the communication between parent and subprocess
doesn’t fit that mold. We don’t use signal events for directed communication, but rather to
broadcast information akin to advertisements on the radio.

A better alternative is the escalation event (see figure 2.84).

Order
received

End

Check
availability

O
rd

er
 p

ro
ce

ss
in

g Item
procurement

Dispatch item Financial
processing

Yes

No

Item available?

Ite
m

 p
ro

cu
re

m
en

t

Start

Place order

Not
available

Inform
customer

Available?

Expect delivery

in >2 days

No

Not
available

...

End

Delete item
from catalog

Late
delivery

Inform
customer

End

Late
delivery

in 2
days

FIGURE 2.84 The escalation event informs the parent process that something needs to be done.

The subprocess can use an escalation event to report directly to the parent process, and
the message won’t be regarded as an error message. Also, the parent process can receive
and process messages from escalation events without canceling the subprocess because
non-interrupting intermediate events can be attached .

2.8.4 Markers

You can apply the loop, multiple instance, and compensation task markers that we de-
scribed in section 2.7.2 on page 63 in a fashion similar to the way you apply subprocesses.
You can use them to model even complex loops as shown in figure 2.85. The top and bot-
tom parts of this diagram are equivalent.

74 2 The notation in detail

Start

Task 1

Task 2

Task 3

Task 4

Yes

No

Task 5

Until condition 2 is met

Task 1 Task 2

Task 3

Task 4

Yes

No

Task 5Yes

Condition 2
met?

No

End

Start End

=

Condition 1
met?

Condition 1
met?

End 1

End 2

Start

FIGURE 2.85 Subprocesses can be defined as loops.

One marker available only for subprocesses is called ad hoc. Recognize it by the tilde char-
acter as shown in (figure 2.86 on the next page). Use the ad hoc subprocess to mark a
segment in which the contained activities (tasks or subprocesses) can be:

■ Executed in any order,

■ Executed several times, or

■ Skipped.

...

2 days before
traveling date

Turn off
heaters

Leave keys
with the

neighbors
Pack suitcases

Write out-of-
office email

~

Travel preparation

FIGURE 2.86 Travel preparation may include, but does not have to include, these tasks.

Any party who executes this subprocess decides what to do and when to do it. You could
say that the barely structured nature of what happens inside this subprocess reduces the
whole idea of process modeling to an absurdity because what happens and when are the
things we most want to control. On the other hand, this is the reality of many processes,
and you can’t model them without representing their free-form character. Frequent exam-
ples are when a process relies largely on implicit knowledge or creativity, or when different

2.8 Subprocesses 75

employees carry out a process differently. You can use the ad hoc subprocess to flag what
may be an undesirable actual state. Doing so could be a step on the path to a more stan-
dardized procedure.

BPMN specifies which symbols must, which may, and which are forbidden to occur within
an ad hoc subprocess. They are:

■ Must: Activities

■ May: Data objects, sequence flows, associations, groups, message flows, gateways, and
intermediate events

■ Forbidden: Start and end events, symbols for conversations and choreographies (dis-
cussed later)

By means of the specification, mixed forms —so-called weakly structured processes —can
be modeled as shown in figure 2.87.

Reference
book to be

written

Research
topics

Create
diagrams

Include
diagrams in the

text

Write text

~

Contribute
Specifications

Find authors
Think about

content

Polish article

Create
manuscript

Manuscript
finishedDiagrams

Every author

Text
[draft]

Ideas

Results of
research

Text
[finished]

FIGURE 2.87 The processes of the individual authors are not subject to a predefined structure.

2.8.5 Transactions

Many processes work in an all-or-nothing fashion: either all steps must be carried out suc-
cessfully or nothing must be done at all. The compensation event, which we discussed
in section 2.6.9 on page 54, can undo tasks already completed without having to model
the undoing in detail. The transaction is a special subprocess, which also helps us in such
cases. We explain this in figure 2.88 using the following example:

Suppose you want to visit relatives overseas. After deciding to make the trip, you start
preparing for it. First, you make a firm plan with your relatives regarding the date and
length of your visit. Second, you book a discount flight, and you reserve a hotel room
(to avoid being an excessive burden on your hosts, despite their protests to the contrary).
Third, you schedule vacation time with your boss. If all goes well, you can start the trip.

What happens, however, if the hotel you wanted is booked and you can’t find another?
What if the boss denies your vacation request? You have to cancel the travel preparation
transaction. The cancel event exists for this purpose. You can only use it within transac-
tions. If you cancel a transaction, it triggers a compensation of all tasks to which corre-
sponding compensation tasks were assigned. You therefore sadly inform your hosts that

76 2 The notation in detail

Plan trip Book hotelBook cheap
flight

Agree date for
visit Apply for leave Start trip

Cancel visit

Cancel hotel

Book
alternative

hotel

Prepare trip

Canceled

Hotel
fully booked

All hotels
fully booked

Cancelation

Cancelation

Application
rejected

Start EndEndStart

FIGURE 2.88 The double border marks a transaction, in this case the expanded subprocess
travel preparation.

you won’t be able to come at the agreed date, and you cancel the hotel reservation, if any.
Because you booked a discount flight, the airline will not refund the ticket price. (You curse
them silently.) After compensating for all the tasks already executed, you leave the transac-
tion through the attached cancel event, and you start over with preparations for a different
travel plan.

This process is flawed. Because of the cursed airline’s poor refund policy, it would make
more sense to book the flight only after the other details are confirmed. Book it at the end
of, or outside of, the transaction to minimize risk. That’s the point: transactions are for crit-
ical processes in which even the smallest risk has to be taken into account. If you arrange
your vacation time with the boss in advance, the risk of having your request rejected seems
small, but it hasn’t been reduced to zero, has it? An important bit of work may come in, and
your non-binding agreement with the boss may evaporate. Transactions provide security
for scenarios like this.

2.8.6 Event subprocesses

We locate an event subprocess within another process or subprocess. Recognize them by
their dotted-line frames.

A single start event triggers an event subprocess, and this can only happen while the en-
closing process or subprocess remains active. For event subprocesses, there can be in-
terrupting (continuous line) and non-interrupting (dashed line) events. This is the same
differentiation made as for attached intermediate events. Depending on the type of start
event, the event subprocess will cancel the enclosing subprocess, or it will execute simulta-
neously. You can trigger non-interrupting event subprocesses as often as you wish, as long
as the enclosing subprocess remains active.

Okay, that’s pretty abstract, but we can demonstrate how an event subprocess works with
an example. (See figure 2.89.)

We invited a couple of friends for dinner. This starts the dinner preparation subprocess of
choosing a recipe and then preparing the meal. While we are doing that, the telephone
rings. Another guest invites himself to dinner. Spontaneous as we are, we just increase the

2.8 Subprocesses 77

Choose recipe Eat mealPrepare meal

Another guest has
invited himself

Take another
guest into
account

Provide for
another guest

Procure food

Preparation
failed

Order food

Invite friends
for dinner

Interrupting event
subprocess

Non-interrupting
event subprocess

Dinner preparation

Start
Start

End

End

End

End

FIGURE 2.89 Event subprocess examples.

amount of food or set another place at the table without interrupting the meal preparation.
If an accident happens during preparation, however, the error immediately triggers the
interrupting event subprocess for remedial action. We order food for delivery. When this
event subprocess completes, we exit the enclosing subprocess through the regular exit and
attend to eating the meal.

You can see in figure 2.90 on the facing page how event subprocesses are represented in
collapsed state: The frame is a dotted line, and we have again used the plus sign to repre-
sent collapsed subprocesses. In the top left corner, we also have the start event triggering
the subprocess.

Choose recipe

Eat meal

Prepare meal

Invite friends
for dinner

Procure food Provide for
guest

Dinner preparation

Start

Start End

End

FIGURE 2.90 Collapsed event subprocesses.

78 2 The notation in detail

The event types that can trigger non-interrupting event subprocesses are:

■ Message

■ Timer

■ Escalation

■ Conditional

■ Signal

■ Multiple

■ Multiple parallel

There are two more types for the interrupting event subprocesses:

■ Error

■ Compensation

Are you wondering if you could model the example without event subprocesses and instead
just attach events? Yes, you could. We did it that way in figure 2.91. In terms of sequence,
the process works identically to the one shown in figure 2.89 on the preceding page. There
is, however, a small but important difference: In the second model, adding an additional
guest and ordering the alternative meal do not take place within the dinner preparation
subprocess, but within the parent process instead. This has the following consequences
(which apply particularly to global subprocesses):

■ If responsibility for the subprocess lies with another parent process, two different roles
take care of executing the subprocess and handling the related events. If the handling
takes place within the subprocess, the same role has to take care of it.

■ If the subprocess is global and thus reusable, each parent process must specify how it
reacts to both events. On the other hand, if handling takes places within the subprocess,
it is reused as well —for good or ill.

■ Global subprocesses cannot access directly the data of the top-level process (or their
parent processes); some data mapping is required. Data mapping is not required with
an event subprocess.

Choose recipe Eat mealPrepare meal

Another guest has
invited himself

Provide for
another guest

Preparation
failed

Order food

Invite friends
for dinner

Dinner preparation

Start Start End End

End

FIGURE 2.91 Compare this process to the one shown in figure 2.89 on the preceding page.

2.9 Pools and message flows 79

2.9 Pools and message flows
2.9.1 The conductor and the orchestra

In section 2.5 on page 40, we described using lanes to assign responsibility for tasks or
subprocesses to different task workers. Lanes always exist in a pool, and the pool bound-
aries represent process boundaries from start to end. To BPMN, the pool represents a
higher-ranking instance compared to its lanes. The pool assumes process control —in
other words, it assigns the tasks. It behaves like the conductor of an orchestra, and so this
type of process is called orchestration.

In figure 2.92, the conductor arranges for Falko to process task 2 as soon as Robert com-
pletes task 1. The conductor has the highest-level control of the process, and each instru-
ment in the orchestra plays the tune the conductor decides upon.

P
ro

ce
ss

 c
on

du
ct

or

Start

Task 1

Task 2

Task 3

Task 4

End

R
ob

er
t

Fa
lk

o
C

hr
is

tia
n

S
te

fa
n

FIGURE 2.92 Tasks and task workers.

Do you think this is unrealistic? Many experienced process modelers have problems with
this way of thinking. They would prefer to model a process sequence like that shown in
figure 2.93 on the facing page on the assumption that no almighty conductor exists in their
company, and that individual task workers have to coordinate and cooperate on their own.

To coordinate cooperation with BPMN requires explicit modeling. You assign each task
worker a separate pool, and the process passes from one to the next as a message flow (as
shown in figure 2.94). In principle, this creates four independent conductors. These have
control over their respective mini-processes, but they can’t do anything other than to send
messages that trigger their successor processes.

That seems complicated —and you don’t have to choose the coordinated cooperation
method for practical modeling. It reveals a basic principle, however, that you must under-
stand. Even though BPMN lanes look very much like those of other process notations, they
represent an entirely different way of thinking, which we attribute to BPMN’s origin in the
world of process automation. In that world, the workflow engine controls all tasks in the
process, even though different task workers may execute them. So the workflow engine
equates to the mysterious, almighty process conductor.

Have you heard of service orchestration in connection with Service Oriented Architecture
(SOA)? That’s almost exactly the task of a workflow engine, except that these services are
not only fully automated web services; they also can be tasks executed by human process

80 2 The notation in detail

R
ob

er
t

Fa
lk

o
C

hr
is

tia
n

S
te

fa
n

Task 1

Task 2

Task 3

Task 4

Forward to
Falko

Forward to
Christian

Forward to
Stefan

FIGURE 2.93 The task workers provide for the respective successor to start the processing.

Task 1

Task 2

Task 3

Task 4

Foward to
Falko

Forward to
Christian

Forward to
Stefan

R
ob

er
t

Fa
lk

o
C

hr
is

tia
n

S
te

fa
n

Separate pool

Message flow

FIGURE 2.94 Each task worker operates in a separate pool.

participants as directed by the workflow engine. What does that signify, however, for purely
functional process modeling, in which you also describe processes not controlled by such
a workflow engine? There’s no general answer to that question.

You can eliminate pools and work just with lanes, modeling the message exchange as nor-
mal tasks as shown in figure 2.93 on the preceding page. That’s traditional, and it’s a prag-
matic solution during, say, a transitional period that allows your co-workers to adapt. In
the medium and long terms, however, avoiding pools denies you a powerful device for in-
creasing the significance of process models.

2.9 Pools and message flows 81

The next chapter explains the most important rules to be observed when working with
pools and message flows. Meanwhile, we show the usefulness of this new thinking by ex-
ample. One thing to remember is that if you strive to harmonize your functional and ex-
ecutable process models to achieve a better alignment of business and IT, you inevitably
face this type of process modeling whether you use BPMN or not.

2.9.2 Rules for application

When working with pools and message flows, you may model the following things (see
figure 2.95):

■ Catching message events, which message flows enter

■ Throwing message flows, which message flows exit

■ Tasks, which message flows enter or exit

■ (Expanded) subprocesses, which message flows enter or exit

R
ob

er
t

...

FIGURE 2.95 Acceptable constructs for working with pools and message flows.

The following constructs violate the BPMN specification and therefore must not be applied
(see figure 2.96 on the facing page):

■ Sequence flows exceeding pool boundaries

■ Message flows not exceeding pool boundaries

■ Events with message flows that are not of the message type

■ Events, which message flows enter and exit

■ Message flows with arrows at the beginnings and the ends

■ Gateways with message flows

2.9.3 The art of collaboration

We examined the process represented in figure 2.97 in connection with the event-based
gateway.

Now consider the broader picture, and think about how this process happens from the
point of view of the pizza delivery service. Presumably, it looks like figure 2.98: As soon as
we receive an order, we bake the pizza. Our delivery person takes it to the customer and
collects the money, whereby the process completes successfully.

82 2 The notation in detail

R
ob

er
t

...

FIGURE 2.96 Forbidden constructs for working with pools and message flows.

Choose pizza Eat pizza

Hunger noticed Hunger
satisfied

Pizza
received

Order pizza

60 minutes

Inquire at pizza
delivery service

Pizza
received

FIGURE 2.97 After the event-based gateway, the path at which the event arrives first is used.

Bake pizza

Order
received

P
iz

za
 D

el
iv

er
y

se
rv

ic
e

P
iz

za
 b

ak
er

D
el

iv
er

y
pe

rs
on

Deliver pizza Collect money

Order
delivered

FIGURE 2.98 The sales process of the pizza delivery service.

Bake pizza

P
iz

za
 b

ak
er

D
el

iv
er

y
bo

y

Deliver pizza Collect money

Choose pizza Eat pizza

Hunger
satisfied

Pizza
received

Order pizza

60 minutes

Inquire at pizza
delivery service

Pizza
received

Hunger
noticed

P
iz

za
 p

ro
ce

ss

D
el

iv
er

y
se

rv
ic

e
C

us
to

m
er

FIGURE 2.99 An overview of the pizza process with one pool and several lanes —a poor
solution.

We want to link the two processes, that is, to examine the interaction of customer and
delivery service from a neutral perspective. We can try to model this interaction by means

2.9 Pools and message flows 83

of a pool and lanes as in figure 2.99, but it doesn’t work well: There are tasks and events that
reference interaction within the pool —waiting for the delivery, for instance, or collecting
the money. Other tasks are carried out by roles oblivious to their partners, such as baking
the pizza and eating the pizza. It is impossible to differentiate the two visually. Strictly
speaking, the diagram is not semantically correct because message events always refer to
messages received by the process from outside, and that’s not the case here.

If we go with pools, the whole process looks like figure 2.100. Both processes in the com-
bined representation would look just as they did before, but now they connect through
message flows. BPMN calls this form of visualization a collaboration diagram. It shows two
independent processes collaborating.

Bake pizza

Order received

P
iz

za
 D

el
iv

er
y

se
rv

ic
e

P
iz

za
 b

ak
er

D
el

iv
er

y
pe

rs
on

Deliver pizza Collect money End

P
iz

za
 C

us
to

m
er

Choose pizza Eat pizza

Hunger
satisfied

Pizza
received

Order pizza

60 minutes

Ask for pizza at
delivery service

Pizza
received

Hunger
noticed

FIGURE 2.100 An overview of the pizza process using two pools.

In two cases, the message flows do not end in an activity or event, but at the participants’
respective pool boundaries. The first one comes from the inquire at delivery service task;
the second one connects to the collect money task. The rationale behind the first one is that
our inquiry does not influence the sequence flow of the deliverer. The pizza service may
provide information or speed up its order processing in anticipation of a new order, but the
baking, delivering, and collecting of money doesn’t change just because an inquiry came
in. As for the collect money messages, there’s a flaw in the model of the customer process:
we have to pay for the pizza before we eat it, and that task is still missing. We added it to
figure 2.101, and now we can connect the message flows directly to the pay for pizza task.

2.9.4 Collapse pools

It often happens that we don’t know the processes of all parties in detail. We may know the
processes of our own company, for example, but not those of a partner company. As long as
our partner and we adhere to agreed-upon interfaces, such as receiving or sending certain
messages, things can still operate smoothly. As customers of the pizza delivery service, we
expect the deliverer to:

■ Accept pizza orders,

84 2 The notation in detail

Bake pizza

Order received

P
iz

za
 D

el
iv

er
y

se
rv

ic
e

P
iz

za
 b

ak
er

D
el

iv
er

y
pe

rs
on

Deliver pizza Collect money End

P
iz

za
 C

us
to

m
er

Choose pizza Eat pizza

Hunger
satisfied

Pizza
received

Order pizza

60 minutes

Inquire at pizza
delivery service

Pizza
received

Hunger
noticed

Pay for pizza

FIGURE 2.101 In the customer’s process, the pay for pizza task has been added.

■ Deliver ordered pizzas and collect the money, and

■ Be available for inquiries.

As customers, we have little interest in the deliverer’s internal process. Maybe he bakes
and then delivers the pizza; maybe when he’s out of supplies, he gets another pizza ser-
vice to bake the pizza and deliver it. That’s his problem —we simply expect to receive our
pizza. In modeling such cases, we can hide the deliverer’s process and collapse the pool
(see figure 2.102 on the following page).

P
iz

za
 C

us
to

m
er

Choose pizza Eat pizza

Hunger
satisfied

Pizza
received

Order pizza

60 minutes

Inquire at pizza
delivery service

Pizza
received

Hunger
noticed

Pay for pizza

Delivery service
Collapsed poolExpanded pool

FIGURE 2.102 The deliverer’s pool is collapsed, which hides the process details.

We could go a step further and collapse the customer’s pool too (see figure 2.103 on the next
page). Now we see only the messages to be exchanged, assuming that we label the arrows
to give us the general idea. The downside is that we can’t recognize interdependencies
any more. We can’t see if the inquiry always goes out, or only takes place under certain
conditions —the actual case. BPMN fixed this problem in version 2.0 by introducing a new
type of diagram, the so-called choreography diagram that we describe in section 2.13 on
page 94.

2.9 Pools and message flows 85

Pizza order - Customer

Pizza delivery Delivery service

Order DeliveryInquiry Collecting Payment

FIGURE 2.103 Both pools are collapsed, and only the message flows are marked.

2.9.5 Multiple instance pools

We showed in section 2.7.2 on page 63 and section 2.8.4 on page 73 that tasks or subpro-
cesses can be marked as multiple, which means that these elements instantiate several
times during execution. BPMN applies this principle to pools too.

Because a pool always represents a participant, we name the construct multiple partici-
pants. Figure 2.104 on the next page shows how to apply it. We defined three participants:
customer, agent, and supplier. If the agent’s process is instantiated, it does so because a
customer places an order. This causes the agent to execute the invite offer task repeat-
edly. The supplier pool now has the same marker as the task that executed repeatedly. At
a glance, this shows that it is not always the same supplier, but that several suppliers are
involved. After obtaining all the offers, one is selected and forwarded to the customer.

The multiple instance participant always helps us when we want to show the interaction
of processes in collaboration diagrams. Some processes may instantiate only once while
others instantiate several times within the scope of cooperation.

Customer

Supplier

Invite offer Select offer

A
ge

nt

Multiple
participants

Forward offer

Order
received

Offer
sent

FIGURE 2.104 BPMN allows multiple participants.

86 2 The notation in detail

2.10 Data
In the description of a process, BPMN focuses on the sequence flow: the sequence of tasks,
gateways, and events. All other potentially relevant aspects to the process execution are
treated as less important. The same applies to information or documents used in, or gen-
erated by, the process. You can account for these aspects in your diagrams by modeling
so-called data objects, which represent all kinds of information regardless of their phys-
ical nature. They can include paper documents, abstract information, or electronic data
records.

Data objects are coupled to flow objects and sequence flows by means of (data) associ-
ations. In addition to their designation, they can be assigned a specific status, which is
marked by square brackets in BPMN. Typical statuses for data objects are:

■ Generated

■ To be checked

■ Checked

■ To be revised

■ Revised

■ Rejected

■ Approved

Task 2.1...

Data 2.1
[status A]

Task 2.2 Task 2.3

P
oo

l 2

Data 2.2

P
oo

l 1

... Task 1.1 Task 1.2 Task 1.3

Data 2.1
[status B]

Data 2.1
[status B]

Data 2.1
[status C]

...

...

Data 2.1
received

Data object

Association

FIGURE 2.105 Examples of working with data objects.

The abstract example in figure 2.105 on the following page shows the following interaction
of pools 1 and 2: In task 2.1, pool 2 generates the data object 2.1 with the initial status
A, which we visualize by means of the directed association from task toward data object.
Task 2.3 needs this data object as input, which is why we have drawn another directed
association there. Furthermore, task 2.3 consumes the output of task 2.2.

Because these tasks directly follow one another, we can omit the directed associations, and
we can connect data object 2.2 directly to the sequence flow. This is just a visual shortcut

2.10 Data 87

of the input/output relationship. Task 2.3, in turn, transforms data object 2.1 from status
A to status B, and it sends it through a message flow directly to pool 1. Pool 1 waits for this
message and then forwards the received data 2.1 to task 1.3, where it is transformed from
status B to status C.

You have to pay attention when using message flows and directed associations in the same
diagram, because they look similar. The most important distinctive features are:

■ Message flows are dashed, the beginning of the line is a small circle, and the arrow is a
closed triangle.

■ Directed associations are dotted, the beginning of the line is unmarked, and the arrow
has an open base.

BPMN defines data as an additional category aside from flow objects and artifacts. This
relevance is based primarily on the desire to execute BPMN process models directly, and
this requires explicit observance of data. For collaboration diagrams, there are a couple of
other interesting symbols besides the message object. We have applied them to the deliv-
erer’s pizza process in figure 2.106 on the next page.

Bake ordered
pizzas

Order
received

P
iz

za
 D

el
iv

er
y

se
rv

ic
e

P
iz

za
 b

ak
er

D
el

iv
er

y
pe

rs
on

Deliver pizzas Collect money

Order
delivered

Order position
(collection)

A
cc

ou
nt

an
t

Book sales

Journal

Sales

Collection input
data object

Output data
object

Data store

FIGURE 2.106 Examples how to work with data symbols.

Any new pizza order that the deliverer receives serves as input for the process. Recognize
this as the arrow in the top left of the diagram. The order may include one or more pizzas
(as expressed by the usual symbol for multiple instances), and the bake pizza task must
execute a corresponding number of times. The number of instances also corresponds to
the number of items in the collection input data object. The collect money task requires the
object for the delivery person to ask for the correct amount. The accountant enters the sale
in a journal. This sale is the output of the process, recognizable by the black arrow. The
journal is a data store that exists, unlike the data objects, regardless of the specific process
instance. The journal remains available long after the process instance has ended. If the
pizza company was more up to date, its accountant could use software or a database.

88 2 The notation in detail

2.11 Artifacts

2.11.1 Annotations and groups

Hunger
noticed

Choose recipe

Desired dish?

Cook pasta

Cook steak

Pasta

Steak

Eat meal

Hunger
satisfied

Prepare saladSalad

Desired
components?

Something
real

Fl
at

-s
ha

rin
g

co
m

m
un

ity

C
hr

is
tia

n

Eat meal

Hunger
satisfied

Eat meal

Hunger
satisfied

Fa
lk

o
R

ob
er

t

In the kitchen In the dining room
Chefkoch.de

Annotation Group

FIGURE 2.107 Annotations and groups.

We use annotations to supplement our diagrams. Annotations can contain almost any-
thing you find useful, and you can connect them to other elements with associations. Usu-
ally, we use annotations to provide insight on the execution of tasks (see figure 2.107). (In
figure 2.7 on page 31, we used annotations to record the average processing times; in fig-
ure 2.72 on page 63, we used them to explain what condition cancels a looping task.)

In figure 2.107, we noted that the food is to be prepared in the kitchen but eaten in the din-
ing room. Because this information refers to several elements in the diagram at the same
time, we can group them. Like all artifacts, groups do not influence execution semantics,
so don’t confuse them with things like subprocesses. You can apply groups any way you
like —even across pool boundaries. Groups can be extremely useful for marking off parts
of your models to which only certain conventions apply. We will return to this possibility
in subsequent chapters.

2.11.2 Custom artifacts

BPMN allows you to introduce symbols that suit your own modeling conventions and par-
ticular information needs. In figure 2.108, we expanded the process of delivering pizzas
with a bicycle and a computer. These appliances help us execute tasks. Apply the same
rules to custom symbols as to all artifacts: connect them with associations to any flow ob-
ject; place them in any position in the diagram.

Tooling

You can use custom artifacts only if your BPMN tool supports them. Relatively few
products do, unfortunately.

2.12 Comparison with other notations 89

Bake pizza

Order
received

P
iz

za
 D

el
iv

er
y

se
rv

ic
e P

iz
za

 b
ak

er
D

el
iv

er
y

pe
rs

on

Deliver pizzas Collect money

A
cc

ou
nt

an
t

Book sale
Custom artifact

Custom artifact

Order
delivered

FIGURE 2.108 Applying custom artifacts.

2.12 Comparison with other notations
Many people interested in BPMN already know other process modeling notations. They
wonder if switching is worthwhile and what they have to watch out for. In this section, we
compare four other notation systems —the ones we encounter most often in our practice
—with BPMN. The primary weakness in all of them, which leads us to prefer BPMN, is that
they lack the ability to model the interactions of participants acting autonomously. As we
saw earlier, simple swimlane representations are insufficient for modeling collaboration.
A secondary reason to prefer BPMN is the greater precision it provides, compared to the
other notation systems, for handling events.

2.12.1 Extended event-driven process chain (eEPC)

The event-driven process chain (EPC) is a component of the ARIS methodology devel-
oped at Saarland University in cooperation with SAP AG. The resulting BPM software, ARIS
Toolset, integrated tightly with the ERP (enterprise resource planning) solutions by SAP.
Processes implemented in SAP products consequently were documented as EPCs, and
that’s a major reason they’ve been implemented so widely. It also made EPC dominant as
a notation until 2008. Now, however, it has become apparent that EPC will be superseded
by BPMN. Many EPC process modelers are preparing to switch, although that’s not always
easy because of differences in the approach. Meanwhile, ARIS offers process modeling with
BPMN as well.

The EPC consists of the three basic symbols: function, event, and connector. Similar to
gateways in BPMN, connectors can function as exclusive branches (XOR), and/or branches
(OR), or in parallel (AND). The difference between data- and event-based branches does
not exist in EPC. The extended version added symbols to describe organizational units,
data, and application systems. You can reference subprocesses through so-called process
paths or process signposts.

Converting EPC process models into BPMN is comparatively simple, as shown in fig-
ure 2.109 on the next page, though you need to be careful when converting events. EPC

90 2 The notation in detail

Application
received

Check
application

XOR

Data
incompleteData complete

Record
application

Reject
application

Application
recorded

Application
rejected

XOR

Application
processed

Expert

Expert

Accounting
clerk

Application

Application
management

A
pp

lic
at

io
n

pr
oc

es
si

ng

E
xp

er
t

Check
application

Reject
applicationno

Record
application

yes

Application
rejected

Application
processed

Data
complete?

C
le

rk

Application

Application
recorded

We can model start events
as start events in BPMN.

We model assigned
organizational units as

lanes in BPMN.

We transfer
information/documents as

data objects.

Data are checked in this XOR connector.
That is why we have to use the XOR

gateway in BPMN and write both events as
possible variants on the edges.

There is no separate symbol
for application systems in
BPMN. Solution: We can

include the information in the
task text, attach an

annotation to the task, or
introduce an artifact.

In the EPC, each function
must be followed by an

event, which is often
unnecessary (so-called
trivial events). We can
simply leave them out in

BPMN. If, on the other hand,
they mark a status we want
to record, we can transfer
them as none intermediate

events.

A connector is mandatory for mergers in
EPC, in BPMN it is not, if the arrows run into

a task or an end event. We can therefore
ignore it upon transfer in this case.

The last event of an EPC marks
the final status of the process, we

therefore transfer an end event
into BPMN.

Application
management

Application
received

FIGURE 2.109 Converting EPC into BPMN.

2.12 Comparison with other notations 91

interprets possible data states the same way as it interprets events —incoming messages
that trigger a process, for example. You mustn’t model data-based decisions as event-
based gateways, but rather as data-based gateways. Given EPC’s name, it is ironic that
BPMN is superior for modeling events. EPC neither differentiates between start, end, or
intermediate events nor does it recognize different types such as message or timer. EPC
doesn’t let you attach events, so it is difficult or impossible to model monitoring functions,
troubleshooting, or escalations. Another advantage of BPMN is in how it lets you treat
an application as a data object: we could have attached our application as an input to the
check application task (as in EPC), but instead, we attached it to the sequence flow between
the start event and the task. You can thus see at a glance that the document was not already
available in the company, but that it was sent there.

EPC still has lots of users. They have a history with EPC, they are used to working with it,
and they may find it hard to internalize the new paradigm that BPMN represents. Given the
shortcomings of EPC for modeling process automation, however, you should not consider
it for modern BPM projects.

2.12.2 UML activity diagram

The activity diagram is one of 13 diagram types defined in UML (Unified Modeling Lan-
guage) version 2. Like BPMN, UML is managed by the OMG (Object Management Group),
though only since 1997. No one should mistake BPMN as a successor to UML, because
UML is a general language for modeling software systems. Though it was not developed
for modeling business processes, UML activity diagrams have been used often for process
modeling —especially for IT projects. One frequent use has been to diagram target state
processes as part of developing engineering requirements for new software.

UML’s notation for activity diagrams is more comprehensive than EPC’s. It contains a cou-
ple of symbols specific to software that have no direct equivalent in BPMN, including pro-
cessing objects and object parameters in individual actions. Most of the current UML sym-
bols for modeling business processes can be converted with no problem. What does be-
come difficult is if you work with interruptible activity regions that cross several lanes. It
would be a tidy solution to transfer these into BPMN as embedded subprocesses, but we
can’t do that because subprocesses in BPMN must not cross lane boundaries. The only so-
lution is to define the subprocesses as global (and thus reusable), and to model the pool
and lanes. That may be ugly, but it is the only way to make it work. (See figure 2.110 on the
following page.)

Activity diagrams remain important for specifying software-related detailed sequences.
Their integration in the UML framework supports this, as does the standardization by the
OMG. But we think BPMN is still better for requirements engineering of process-driven
applications, particularly if you also need to document process functions. Defining pro-
cesses that the workflow engine executes directly is BPMN’s specialty. No other notation
can match it.

92 2 The notation in detail

A
pp

lic
at

io
n

pr
oc

es
si

ng

 In
te

rru
pt

ib
le

 a
ct

iv
ity

re

gi
on

E
xp

er
t

Check
application

Reject
application

No

Record
application

Yes

Application
processed

Data
complete?

C
le

rk

Application

Application systems are
represented as object nodes
too in UML 2. BPMN provides
the options already presented in
the EPC comparison.

Application
management

Application
received

Check applicationApplication

Record application

Reject application

Application management

Application processed

[Data complete]
[Data incomplete]

Application processing

Application withdrawn Confirm withdrawal

The activity itself decribes the
process, as understood by the
BPMN, which is why we can
transfer it as a pool and write the
designation in the pool header.

ExpertClerk

An object node in this case
corresponds most likely to a
data object.

The UML has the XOR split shown
here and the AND parallelization or
synchronization as control elements for
sequence control. On the other hand, it
does not know an and/or split (OR).

Initiating receive signals
correspond to a start event
in BPMN, for example, of
the message type.

Actions are
tasks in BPMN.

Like the EPC, the UML
requires the respective node
for the merger, which we do
not always need in BPMN.

The final node in UML corresponds to the termination in
BPMN. Interestingly, it is used often in UML diagrams,
even though the UML also knows simple final nodes for
paths. But we recommend always to work with simple
end events if a termination is not required.

An interruptible activity region
corresponds to an embedded sub-
process expanded in the parent
process in BPMN. But that does
not fit if the region is to cross
several lanes. Then we have to
work with reusable subprocesses
in BPMN.

Application received

Interrupting receive signals from
activity diagrams can be differently
interpreted in BPMN in this case
as a message attached to the
subprocess (region).

A
pp

lic
at

io
n

pr
oc

es
si

ng
 -

E
xp

er
t

Application
withdrawn

Confirm
withdrawal

We can usually transfer
so-called partitions as
lanes.

Application
withdrawn

FIGURE 2.110 Converting a UML activity diagram into BPMN.

2.12.3 ibo sequence plan

The ibo sequence plan is implemented in Prometheus, which is BPM software from ibo
Software. Like EPC, Prometheus is a proprietary notation system. We include it here be-

2.12 Comparison with other notations 93

cause it is based on the conventional and widespread flow diagram. (ibo is a management
consulting agency with more than 25 years of experience. Most of its customers are from
the German-speaking financial world.) Though the ibo sequence plan is well established
among process managers, ibo has discovered the advantages of BPMN. It has integrated
BPMN into Prometheus.

Most of the symbols of the sequence plan transfer easily into BPMN, as we illustrate in
figure 2.111 on page 93. The only problem is when you have a temporal interruption in your
sequence plan. This can only be modeled as a timer event if it is caused by a process owner
who deliberately does nothing for a certain period, and who then continues the process.
We already examined sequences in which an interruption served as an indicator. We could
continue the process after a countdown expired and because something else needed to
happen. That does not work in BPMN. The only solution is to model the event that we’re
waiting on as a type (a message or a condition, perhaps), and to append an annotation to
show how long it usually takes for the event to occur. That gives us a clean control flow
without losing the indicator for the average wait time.

2.12.4 Key figures and probabilities

Can BPMN analyze and simulate processes? People who have worked with other notation
systems ask this regularly, but the answer may not be a matter of methods but one of tools.
What BPM software do you use? Does it let you store key figures and probabilities as well
as the corresponding analysis?

To be honest, the BPMN specification —even at version 2.0 —does not provide attributes
to integrate key figures in process analysis. You could regard that as a regrettable deficit
in the standard. On the other hand, simulation is particularly complex, and few people or
organizations are willing to spend the time and money to implement it consistently. If the
BPMN specification represented all aspects of process simulation, the document would
probably be 50 to 100 pages longer than it is. The shift in focus might even undermine
BPMN in terms of the things it does well.

Figure 2.112 on the following page shows how the key figures lead time (LT), idle time (IT),
and cycle time (CT) can be visualized in a process diagram along with probable outcomes.
After an application arrives, it sits for about two hours before it is checked. The check takes
15 minutes, then the expert decides whether to reject or record it. Nine times out of ten, the
application is recorded. We have modeled possible intermediate states, and we can offer
the first analysis: The processing time from receipt to recording is 160 minutes. Rejects
take only 140 minutes because the process bypasses the holding time on the clerk’s desk.
Taking all probabilities into consideration, we know that the average running time for the
process is 158 minutes. Appropriately, we note this at the end event.

This is merely one example. Different BPMN tools offer different ways to define key figures,
and they provide a variety of ways to depict and to use them. The extent to which process
simulation is carried out makes further demands on the process model. Further depen-
dencies may include the occurrence probability of multiple, the capacity of resources, and
so on.

94 2 The notation in detail

Application
received

A
pp

lic
at

io
n

pr
oc

es
si

ng

E
xp

er
t

Check
application

Reject
application

no

Record application
[Application

management]

yes

Application
processed

Data
complete?

C
le

rk

Application (physical document)

A source in the sequence plan is
the symbol for the process start.
This corresponds to the start
event in BPMN.

In the sequence plan,
assigned roles stand
directly in the task. In
BPMN, they become lanes.

The sequence plan differentiates
between conventional files
(physical documents) and
electronic files. In this case, we
modeled the application as a
conventional file. Because we
know only the data object in
BPMN, we have to incorporate
the type in the designation or to
introduce another artifact to
maintain this differentiation.

The Or split of the sequence plan applies
exclusively and thus corresponds to the data-based
XOR gateway in BPMN. In the sequence plan, we
see who decides on continuing. In BPMN, this is
represented by dragging the XOR gateway into the
corresponding lane. The sequence plan does not
know an And-Or (similar to the OR gateway), but it
knows an AND spli (similar to the AND gateway).

The application systems are given in the
task itself, as are the roles. In BPMN, we
can copy this style (which we did in the
example) or introduce a separate artifact.

The temporal interruption is
a special feature of the ibo
sequence plan. We can
transfer it as an intermediate
timer event, but only if this
interruption is caused by the
process owner.

The OR merge of the sequence plan is
recognized by the arrowhead. In BPMN,
as always we would either use an XOR
merge or let the arrows run directly into
the task or the end event.

The sink marks the end of the
sequence plan, we use the end
event in BPMN instead.

Application
received

EXPERT

Check application

EXPERT

Data complete?

EXPERT

Reject application

Application

2 hours
K1
1

K1
1

Connectors are used in the sequence
plan to replace the chain-links,
is, the control flow, with jump labels.
That makes particular sense if the
diagram extends over several pages.
In BPMN, we use the link events for
that. In this diagram, the use is
unnecessary.

EXPERT

Record application

Application management

yes

no

K1/1 K1/1

2 hours

FIGURE 2.111 Converting an ibo sequence plan into BPMN.

2.13 Choreographies and conversations
We showed in section 2.9 on page 78 that BPMN attaches particular importance to the in-
teraction of different participants. BPMN even describes two additional modeling methods
for this. We have so far seen little value in these methods for real-life projects, but we’ll ex-
plain their potential. At the bottom right of figure 2.113 on the facing page is our pizza
collaboration from section 2.9 on page 78. It was merely decorated with the message ob-
jects (the envelopes), and we have positioned them on the message flows.

In the middle of the picture, notice the corresponding choreography diagram. This dia-
gram reduces our view of the process to the exchange of messages between participants.
In section 2.9.4 on page 83, the pools of both participants were collapsed. Choreography
diagrams are considerably more accurate because we can still recognize the fundamental

2.13 Choreographies and conversations 95

A
pp

lic
at

io
n

pr
oc

es
si

ng E
xp

er
t

Check
application

Reject
application

No
(10%)

Record
application

Yes (90%)

Application
rejected

Application
processed

Date
complete?

C
le

rk

Application

Application
recorded

Application
received

IT: 120 min
LT: 15 min

IT: 0 min
LT: 5 min

IT: 20 min
LT: 5 min CT: 160 min

CT: 140 min Ø CT: 158 min

FIGURE 2.112 Possible representation of key figures in BPMN highlighting how the key figures,
lead time (LT), idle time (IT), and cycle time (CT), can be visualized.

sequence. In the earlier diagram, it appeared that the customer only asked for delivery if 60
minutes elapsed since his or her order. That would be strange. In contrast, a choreography
diagram models only the tasks that are relevant to the message exchange, and they do it
only once for both participants. This makes the diagram much clearer. The sending partic-
ipant has a white background; the receiving or reacting participant has a gray background.
It does not matter if you place the participants above or below the task. Choreography
diagrams can also define subprocesses to be modeled as choreographies.

The top part of the figure models the content of a matching conversation. This is the most
compact way to represent the participants and their collaboration. A conversation in this
regard stands for messages that are exchanged and logically connected to each other. In
other words, they correlate. In most cases, a conversation should stand for one collabo-
rative process only. To be precise, we note that conversations in BPMN are not a separate
type of diagram, but a variant of a collaboration diagram.

When do such diagrams make sense? Some BPMN experts regard them as superfluous, but
we disagree. A one-person business may have little need for process modeling, but the sys-
tematic examination of processes —from an organizational or a technological perspective
—only becomes more important as an organization grows larger and more heterogeneous.

As the number of people collaborating in a process increases, the less you can depend on
implicit understandings and coordination among them, and the more important process
modeling becomes. The same applies even more clearly to process implementation be-
yond the limits of IT systems. Both choreography diagrams and conversations can rep-
resent useful maps for situations where you have to recognize quickly the critical points
in a collaboration. If required, you can then model them in more detailed collaboration
diagrams.

96 2 The notation in detail

Order pizza

Deliverer

Customer

Deliver pizza

Deliverer

Customer

60 minutes

Inquire

Deliverer

Customer

Collect money

Deliverer

Customer

Bake pizza

Order
received

P
iz

za
 D

el
iv

er
y

S
er

vi
ce

P
iz

za
 b

ak
er

D
el

iv
er

y
bo

y

Deliver pizza Collect money

P
iz

za
 C

us
to

m
er

Choose pizza Eat pizza

Hunger
satisfied

Pizza
received

Order pizza

60 minutes

Inquire at pizza
delivery service

Pizza
received

Hunger
noticed

Pay for pizza

Order

Pizza

Pizza

Receipt

Money

Order

Pizza

Receipt

Money

Customer

Deliverer

Trigger and
process pizza
delivery

C
on

ve
rs

at
io

n
C

ho
re

og
ra

ph
y

C
ol

la
bo

ra
tio

n

P
ro

ce
ss

 (p
riv

at
e)

P
ro

ce
ss

 (p
riv

at
e)

Participant
(collapsed pool)

Sending
participant

Receiving
participant

Inquiry
message

Reacting
participant

Answer
message

Conversation

Deliver pizza

Deliverer

Customer

Order
delivered

FIGURE 2.113 The pizza story as conversation, choreography, and collaboration.

3 Strategic process
models

3.1 About this chapter

Strategic process model

Operational process model

Human
process flow

Technical
process flow

Process overview
Fast comprehension
Logically abstract

Operational processes
Coordinate details between
human process flow and technical
process flow (automation)
Physically specific

Content:
Goal:

Semantics:

Content:
Goal:

Semantics:

FIGURE 3.1 Strategic process models in the Camunda house

3.1.1 Purpose and benefit

You must be able to depict a process from start to end at the strategic level. Such strategic
process models are necessarily rough. They are necessarily compact. The audience to bear
in mind is likely to be the executive in charge of a company division. He or she may be a
process manager or a process owner. The strategic process model also serves process par-
ticipants, analysts, engineers, and external partners. Yes, these other audiences will need
—and they are likely to insist upon —more detail, but they also need to have the strategic
view if they are to work together toward a goal that makes sense for the organization.

To be readily comprehensible, your strategic diagrams may need to include information on
computer systems or human tasks, but the diagrams must remain compact. The point at
this stage is to create something that everyone can grasp, and, at a glance, know what the
process does, for whom it is done, and the basic sequence of how it gets done.

Consider a strategic model when needs like these exist:

98 3 Strategic process models

■ To clarify what is and is not part of a process.

■ To identify resources for a process and assign responsibilities.

■ To identify key performance indicators and specify their characteristics. An example KPI
may be that a process has a maximum run time of 24 hours.

■ To review a process initially in the course of an improvement action.

3.1.2 Model requirements

The chief requirement of a strategic process model is that it is easy to understand —even
for people with no experience in BPMN. The model must be comprehensible so that it will
be accepted as a means for helping the situation. The title of Steve Krug’s book on web
usability is wonderfully suggestive when it comes to strategic process models:

Don’t Make Me Think!

It also must be abundantly clear who the customer of the process is. Process manage-
ment philosophy is that a process exists only for carrying out a defined task for a defined
customer. Ensuring customer satisfaction is the purpose that defines many performance
characteristics, and these characteristics are often the focus for improvement projects.

No one can grasp a process at a glance if the model extends across several pages. Our
standard for a strategic model is to fit it onto a single sheet of standard-sized office pa-
per. Orient the paper horizontally, and you automatically have something compatible with
PowerPoint. It doesn’t help to squeeze in as many lines and boxes as possible. For our
strategic models, we limit ourselves to 10 or fewer flow objects and not more than eight
artifacts.

In the purposefully plain model we’re describing, you can’t use the whole array of BPMN
symbols. (This isn’t the time for compensation events or multiple-instance tasks in any
case.) Does the model lose some of its expressiveness? Sure. Does it become less precise?
Not necessarily, though it does make for a less granular representation than you might oth-
erwise prefer. Limiting yourself to ten flow objects and eight artifacts is very restrictive too,
although you can choose which symbols to use and which to set aside for the sake of sim-
plicity. You can even use custom symbols as artifacts. We’ll discuss custom symbols later
in this chapter; meanwhile, section 3.3 on page 102 presents a set of symbols that we find
useful for strategic diagrams.

The second compromise is a semantic one. In section 3.2 on page 101, we give an example
that shows how the semantics of strategic process models cannot be fully consistent. We
struggled with this at first, but what we finally came to accept was that insisting on con-
sistent semantics in strategic process models just made the models too complicated. The
complexity interfered with the understanding and acceptance we needed from our target
audiences, and so the models failed. Now, we knowingly accept inconsistencies, but only
at the strategic level, mind you!

We remain strict with syntax, however, and we make certain our strategic models are syn-
tactically correct. (The available BPMN tools check syntax and so help to enforce correct
syntax anyway.) As a rare exception, we admittedly diverge from the BPMN syntax, but only
if the divergence is minor in nature, permitted by the tool, and offers a clear advantage in
creating understanding.

3.1 About this chapter 99

Our modeling etiquette

The principle for strategic process models is: Make the syntax as correct as possible,
but allow inconsistent semantics if necessary.

3.1.3 Procedure

When do we model strategic processes? We do it either after the initial process discovery,
when we have a general idea of an existing process, or at the beginning of process design,
when we are configuring the new or improved process (see figure 3.2).

Process survey Process
documentation

Process
design

Process
implementation

Process
controlling

Process
analysis

Existing
process

New process

Yes

No

Weak points?

Current state
process model

Target state
process
model

Current state
process
model

Continuous until process
improvement is required

Diagnose problems
Search for causes
Estimate potential

Modeling
Target state concept
Process simulation
Assessment of alternatives
ROI estimate

Change Management
Conventional IT projects
Process automation

Workshops
Interviews
Monitoring

Modeling
Process maps
Flow diagrams

BPM governance

FIGURE 3.2 Strategic process models can be generated in two stages of the BPM life cycle.

It is significantly harder to do an initial discovery of a process than most people think.
Sometimes you have documents such as standard operating procedures available, but
most of the time you have to interview the process participants or the process managers.
These may be one-on-one interviews or group interviews carried out as part of a workshop.

The advantages of a workshop are that you can gain several perspectives at once, and that
the participants start feeling invested in the BPM project early on. That can increase ac-
ceptance. Workshops can be exhausting, however, because everyone perceives the process
differently, because they all want to have their pet variations and contingencies consid-
ered, and because they already know what goes wrong. When different departments or
teams participate —usually the case because of the comprehensive nature of the processes
—discussion can quickly devolve into political squabbling. By then, you stand little chance
of creating a differentiated process model. Imagine you’ve drawn only two rectangles when
you hear the first interjections:

100 3 Strategic process models

■ "Before we can confirm the delivery date, we have to check the order details for com-
pleteness."

■ "But we don’t always do that after the order was received! Sometimes we have to check
the customer’s credit first."

■ "But only if the contract volume exceeds 300,000!"

■ "And if it is not a class A customer!"

■ "Yes, right, that would have to be checked too then. Who takes care of that?"

■ "The account executive."

■ "In our department, his assistant does. At least, if the account executive is busy."

■ "Seriously? Do they even permit that? In our department, he always gives the account
executive the order so she can check it!"

And so on. Every BPM expert knows that his or her attempt to get a bird’s eye view of the
process gets lost in the croaking of the frogs who, naturally, have only a frog perspective.
Unless you chair the workshop with an iron fist, the disaster takes its course: Everybody
either gives up in exasperation or, even worse, agrees on a process model that looks com-
plete but isn’t, one that may even be wrong. You may as well give up too, since your process
model will only gather dust in some little-used cabinet!

When you chair an initial survey workshop, use the following as a mantra:

All process models are incomplete —but some of them are useful!

We credit statistician George E. P. Box for inspiring this thought. What it means is that you
should never attempt to model a process in a greenfield approach, to try to account for
every contingency and any possible variation. It simply will not work out. Instead, you
should communicate at the beginning of the workshop that you want to start with just a
general idea of the process. Set the following goals for this first iteration:

■ We want to record the process from start to end.

■ We want to record the process in a maximum of eight steps.

■ We want to record the standard procedure only.

■ We want to record the regular responsibilities.

■ We want to record neither the weak points nor to devise improvements.

If you set these goals at the beginning of the workshop, you and your frogs can achieve the
first-iteration bird’s eye view you need, and you can do it in a span of 30 to 45 minutes!
You must be careful to stay on target, however. Whenever a frog tries to escape back to the
swamp, you have to stop him!

This first iteration is important psychologically. When it’s done, the group will feel a flush
of success, and they will see that the process can be managed after all. From this basis, you
can launch into the gritty details of the process in subsequent iterations.

Can we start using BPMN in the first iteration? It isn’t necessary, but yes, we can, and doing
so has a benefit: It gives the group a good initial feel for the symbols and practices. You
can also use index cards. For some time now, we have been experimenting with BPMN
symbols attached to a white board with magnets. You can move them around easily during
the discussion.

3.2 Case example: Recruiting process 101

3.2 Case example: Recruiting process
Robert, a Human Resources manager, wants to improve the recruiting process. He believes
that his staff members do too many tasks by hand that could be handled more efficiently
by software. Moreover, he’s tired of hearing complaints from other departments about how
long it takes to fill vacancies.

Robert is convinced that most of the delays are because the managers of those other de-
partments spend too much time vetting candidates. Also, they don’t provide enough infor-
mation with their requisitions, and they are slow to respond to questions. He can’t prove
his suspicions though.

Talking with us, Robert describes the recruiting process:

"When a department wants to fill a vacancy, the manager notifies me by e-mail. They fill
out a form —it’s just an Excel spreadsheet —where they enter the job title, and a job de-
scription, and their requirements, and..."

We interrupt Robert. The point, we explain, is not to discuss the cells in his Excel spread-
sheet. We are interested in the basic sequence. The other stuff comes later.

"Oh, okay. So they notify me of the vacancy by e-mail. I have to check to whom I forward
the e-mail, and that depends on who’s available at that moment. Usually I just ask around,
since we are all in one office anyway."

Again, we have to dampen Robert’s talkativeness. Patiently, we explain that the point is
merely to record the most important process steps and to set aside any operational details.
He seems taken aback, but he continues:

"Well, then it’s simple: We post the job and wait for appropriate applications. We check
the applications, select a candidate, and fill the position. Essentially, our job is done if the
selected candidate signs an employment contract, even though we have to yet record his
or her information in the personnel files. Is this still too much detail?"

It is. For us, however, we can now extract the following key data about Robert’s process:

■ The process is triggered by a department’s requirement to fill a vacancy.

■ A job is posted, applicants apply, applications are checked, and the vacancy is filled.

■ The process has reached its target when the vacancy is filled, in other words, when an
employment contract is signed.

Based on the key data, we build the process model in figure 3.3 on the following page, which
Robert understands right away, although we did have to explain a little about the condi-
tional event that triggers the process. We deliberately put the end event in the department’s
lane to follow the BPM principle of starting and ending processes with the customer.

As a BPMN adept, did the semantic inconsistency of the model catch your eye? If we imag-
ine a token running through the process, we have a huge problem with the submit appli-
cation task and also the check applications task. If a single application was submitted, it
is impossible to check several applications. That is a contradiction in content, a semantic
inconsistency.

The problem doesn’t get better by changing the task description to the plural form submit
applications. That makes it look as though one applicant applied for the job repeatedly,
and that’s probably nonsense too. The truth is that there is no formal, clear, syntactically

102 3 Strategic process models

R
ec

ru
iti

ng
 p

ro
ce

ss

O
ur

 c
om

pa
ny

Advertise job

Submit
application

A
pp

lic
an

t

Check
applications

H
iri

ng
 d

ep
t.

Fill vacancy

Vacancy arises

Report job
vacancy

H
um

an
 R

es
ou

rc
es

Vacancy filled

Contract signed

FIGURE 3.3 Strategic process model for the recruiting process.

correct solution for this, assuming that we want the model to remain as easy to understand
as it is now.

What does Robert say about our problem? Probably nothing. For him, the connection
between these tasks is obvious, and he grasps the basic sequence of the process at a glance.
We have achieved what we needed from the strategic process model, so we smile and nod
and keep quiet about the semantic inconsistency.

The representation has another shortcoming: You can’t tell from the diagram that examin-
ing the job applications involves the requesting department as well as Human Resources.
We accept this inaccuracy at the strategic level as well, since we haven’t started the detailed
analysis phase yet. If we model a task or a subprocess involving more than one process
participant, we assign the activity to the lane of the party responsible for successful com-
pletion.

3.3 Restricting the symbol set
As we showed in Chapter 2, BPMN has more than 50 symbols. That’s far too many for
strategic process models, and it is why we use only a subset of symbols. Use any subset you
choose for strategic process models, but our suggestions follow.

3.3.1 Pools and lanes

After reading section 2.9 on page 78, you should assess figure 3.3 critically. After all, BPMN
requires a conductor for each process, one who orchestrates (assigns tasks to) all the peo-
ple and systems in the process. But this process isn’t controlled by a workflow engine, so
there is no conductor here. When the requesting department sends its request to Human

3.3 Restricting the symbol set 103

Resources, there is no forwarding of the instance, so you should model it as a message flow.
Also, you should assign the requesting department to another pool.

In figure 3.4, we did assign the requesting department to another pool. It now reports its
vacancy explicitly in the form of a message to HR and, if the vacancy can be filled, the
requesting department is informed likewise.

R
ec

ru
iti

ng
 p

ro
ce

ss Advertise job

Submit
application

A
pp

lic
an

t

Check
application Fill vacancy

H
um

an
 R

es
ou

rc
es

D

ep
ar

tm
en

t

Vacancy filled

H
iri

ng
 d

ep
ar

tm
en

t

Vacancy arises

Report vacancy

Vacancy filled

Vacancy
reported

Contract
signed

FIGURE 3.4 Reassigning the requesting department to a separate pool.

While this representation has its charm, a problem still exists: The applicants are not or-
chestrated by a conductor either. (A conductor for this pool would have equal control over
both applicants and HR.) Figure 3.5 on the following page shows the collaboration when
each party has its own pool.

The more we detail our model of the collaboration, the more questions arise, and the more
we can detect inaccuracies and inconsistencies. How does an applicant learn about the
vacancy? If he or she responds to a published notice, we should model this with a signal
event, not a message. And the diagram still shows that we are waiting for one application
instead of several, nor is it clear that we check applications immediately upon receipt or
collect them all before checking. Finally, it appears that the applicant only has to submit
an application to achieve employment. No interview required!

We could clarify all these issues with Robert and revise the model accordingly, but that’s
not the purpose of the strategic process model. Robert grasped the meaning of figure 3.4
with little explanation. It is doubtful that he would react well to our later diagrams if he
encountered them when we weren’t there to explain the symbols for the signal event or the
different cardinalities of instances (one job posting, many applications). Robert wouldn’t
understand the model at first glance, and he wouldn’t accept it any more. Consequently,
we put figure 3.5 on the following page aside for further development at the operational
level.

104 3 Strategic process models

H
um

an
 R

es
ou

rc
es

Advertise job

Submit
application

Check
application Fill vacancy

Vacancy filled

H
iri

ng
 d

ep
ar

tm
en

t

Vacancy arises

Report vacancy

Vacancy filled

Vacancy
reported

Contract
signed

A
pp

lic
an

t

Advertisement
seen

Application
received

Application
submitted

FIGURE 3.5 Each party is assigned its own pool.

For strategic process models, we usually abstain from using multiple pools unless the cus-
tomer is external to the organization. In such cases, a separate pool lets us model an
overview of order processing, for instance, or complaint handling in the second pool. In
figure 3.6, we show the customer as a collapsed pool so that we can focus on the process
sequence at the time an order is received. Wouldn’t it be nice if we could model all pro-
cesses this way?

S
al

es
 D

ep
ar

tm
en

t

Check order
Retrieve item

from
warehouse

Dispatch item

Order
processedOrder received

Customer

FIGURE 3.6 The customer as a collapsed pool.

We can’t. The recruiting process example shows why we can’t. In reality, we often have
external partners that cannot be assigned to their own pools without making our strategic
diagram so complex that it no longer serves our needs. On the other hand, we often deal
with processes involving internal customers such as the hiring department in the recruiting
process.

3.3 Restricting the symbol set 105

3.3.2 Tasks and subprocesses

Tasks often appear in our strategic models, but subprocesses appear only rarely. Task typ-
ing (see section 2.7.1 on page 61) is something we don’t do for strategic process models
though, and we also abstain from applying markers (see section 2.7.2 on page 63) with one
exception: the loop marker. That is intuitive for most people, so we use it for strategic
process models.

Our modeling etiquette

When we explained tasks in section 2.2 on page 27, we said our convention is to use the
verb + object pattern —report vacancy, for example. When designating subprocesses
at the strategic level, we do things a little differently. We nominalize them —turning post
job into job posting and check application into application checking. In some cases,
nominalization produces something that sounds a little unfortunate, but there are two
advantages: First, this practice differentiates tasks from subprocesses. Second, com-
pared to tasks, subprocesses are discussed more often and in more depth. The nominal-
ized forms help participants express themselves more constructively: "The application
checking is still too complex. We have to...." Does this seem like splitting hairs? Is it
pedantic? Our experience has shown that the devil is always in the details of project
communication and software development. Careless language quickly leads to costly
misconceptions; it is worth paying attention to such details.

Subprocesses should refine processes and process models. In the recruiting process model,
we could define the steps advertise job, submit application, check application, and fill va-
cancy as subprocesses. It’s likely that they stand for complex operations and not simple
tasks. From what Robert told us, the report vacancy task, however, seems to be limited to
completing and sending an Excel spreadsheet. That doesn’t sound like a complex opera-
tion, so we leave it as a task. To represent this thinking, we come up with figure 3.7.

R
ec

ru
iti

ng
 p

ro
ce

ss

O
ur

 c
om

pa
ny

Job
advertisement

Application
submission

A
pp

lic
an

t

Application
checking

H
iri

ng
 d

ep
t.

Vacancy
filling

Vacancy arises

Report
vacancy

H
um

an
 R

es
ou

rc
es

D

ep
t.

Vacancy filled

Contract signed

FIGURE 3.7 Differentiating tasks and subprocesses in the recruiting process.

106 3 Strategic process models

The question now is if we want to model collapsed subprocesses fully on the strategic level.
Usually, we don’t do that because the point of the strategic level is not to show detailed
operational sequences. We can’t make it correspond smoothly to the subprocesses level of
detail anyway because of the semantic inconsistencies already described.

3.3.3 Gateways

The recruiting process shown in figure 3.7 on the preceding page is based on the assump-
tion that we can fill vacancies when and as we like. That’s not the reality, because some-
times we can’t find a qualified candidate. We could model this and other special cases with
gateways, but not at the strategic level.

At the strategic level, we only deal with the so-called happy path, meaning that we show the
process path and results that we’d like to see. Most of the time, the happy path is sufficient.
But if a process has different triggers, as in a customer-driven process, for example, we
do sometimes have to model multiple paths at the strategic level. This is the time for a
gateway.

We recommend using gateways as follows (refer to figure 3.8 on the next page):

■ Use XOR gateways for splits, that is, when no conditional flows exit directly from tasks.
XOR gateways are easier to intuit than conditional flows. Target audiences understand a
split when they see it.

■ Merge tasks without XOR merge. In other words, let arrows flow directly into tasks. Such
gateways (especially loops) only confuse inexperienced users; besides, omitting them
results in more compact diagrams. Although we must use the gateways for merges in
front of intermediate events and AND gateways, those should not appear at the strategic
level.

■ Use the AND gateway with no direct exit from the tasks to synchronize and make paral-
lel. Parallel parts of a process need to be synchronized again later, so the AND gateway
should be used in both cases to make the representation uniform and to avoid confusion.

■ Do not use the OR gateway. It quickly results in meaningless constructs if you’re not
careful. Theoretically, you can represent any OR gateway by combining XOR and AND
gateways. Again, however, this kind of complexity should not be part of a strategic dia-
gram.

■ Do not use the complex gateway. This representation of complex splitting and merging
logics does not belong at the strategic level.

3.3.4 Events and event-based gateway

We recommend using start and end events at the strategic level to mark the start and the
end of the process. You could do without these symbols, and the recruiting process would
look like figure 3.9 on page 108. The diagram is more compact, but you can’t see the pro-
cess trigger or its desired end condition. That’s a particular problem for the start-to-end
presentation we’re trying to create at the strategic level.

3.3 Restricting the symbol set 107

S
pl

itt
in

g

Recommended Not recommended

Answer 1

Answer 2

Question

Answer 1

Answer 2
M

er
gi

ng
P

ar
al

le
liz

at
io

n
A

nd
/O

r

Condition 1

Condition 2

yes

no

yes

no

Condition 1?

Condition 2?

C
om

pl
ex Model differently or better

at
strategic level.

S
yn

ch
ro

ni
za

tio
n

Not possible without AND
merge

FIGURE 3.8 Recommended uses for gateways at the strategic level.

Compared to start and end events, intermediate events often require a little explanation.
It is difficult for many people to understand at the outset that a catching event means that
the process waits for that event to occur. We have to label them descriptively to make the

108 3 Strategic process models

R
ec

ru
iti

ng
 p

ro
ce

ss

O
ur

 c
om

pa
ny

Job
advertisement

Application
submission

A
pp

lic
an

t

Application
checking

H
iri

ng
 d

ep
t.

Vacancy
filling

Report vacancy

H
R

 D
ep

t.

FIGURE 3.9 The recruiting process without start and end events.

meaning clear. With the exception of none events, catching intermediate events are too
complicated for the strategic level.

We only permit some of the possible event types at the strategic level:

None events may be used as start, intermediate, and end events. The intermediate event
can indicate process status during the execution. Process owners readily accept this kind
of status as milestones they can use to monitor progress. In figure 3.10, we show two mile-
stones defined for the recruiting process. At the strategic level, process models are some-
times so clearly laid out that you could define a milestone for every step. In such lovely
cases, it is probably better to leave explicit milestone indicators out of the diagram just for
simplicity’s sake.

R
ec

ru
iti

ng
 p

ro
ce

ss

O
ur

 c
om

pa
ny

Job
advertisement

Application
submission

A
pp

lic
an

t

Application
checking

H
iri

ng
 d

ep
t.

Vacancy
filling

Vacancy arises

Report
Vacancy

H
um

an
 R

es
ou

rc
es

D

ep
t.

Vacancy filled

Contract signed

Applicant
selectedJob advertised

FIGURE 3.10 Defining milestones for the recruiting process.

We permit message and timer events as start events and intermediate events at the strategic
level. The symbols are virtually self-explanatory.

The conditional event is problematic because people don’t recognize it right away. It can be
useful at the strategic level, however, because process owners want to see at a glance which
conditions trigger a process or when a process has to execute. A common example is the
tendering process, which, for compliance reasons, has to start as soon as an order exceeds
a certain amount. This is why we include the conditional event in our strategic level toolkit.
We use it often.

3.3 Restricting the symbol set 109

We try to apply a type to every process start event. In other words, we model it as a message
or a timer or a conditional event. We succeed almost every time. If none of these events
apply, we consider first if we have chosen the correct process start —if our pattern matches
the process, or if the process actually starts earlier or later than we thought. Once in a while,
we model a none type start event at the strategic level. If we fully model a subprocess, that
none start event is important for correct syntax because a subprocess can only be started
by its parent process.

Intermediate events can be also attached to tasks and subprocesses, but we avoid using
them in this context at the strategic level because they indicate an exception. We want to
record only the standard sequence for now. We also exclude the event-based gateway from
strategic diagrams; reacting to events is an inappropriate level of detail for the strategic
level.

3.3.5 Data and artifacts

Text annotations are permitted at the strategic level. We use them often. In the recruiting
process example, annotations helped us to add information to the vacancy filled end event,
namely that the employment contract was signed at that point.

People easily understand the group frame, so it is permissible at the strategic level, but
we find that it gets used infrequently because strategic models are clear enough without
it. Inexperienced modelers often mistake the group frame for an expanded subprocess,
so you may want to hide the group frame at first. You can reveal it after the modelers’
understanding has grown.

Data objects quickly result in visual overload. On the other hand, they can make two things
readily apparent:

1. The essential input and output parameters of a process or a subprocess.

2. The type of communications between process participants.

The second item technically is a message-flow domain. Because we deliberately avoid us-
ing multiple pools —and hence their message flows —at the strategic level, we resort to
data objects.

When we ask the Human Resources manager, Robert, how information is transmitted in
his recruiting process, he says, "We receive requirement notifications by email. We then
post the job notices to our website and also on the major Internet job sites. We receive
applications by postal mail and email, though the email responses have been growing as a
proportion of the total."

We can model Robert’s communication by using data objects attached to the sequence
flows by means of associations (see figure 3.11 on the following page). We usually attach
the essential input and output data to the sequence flow between the start event and the
first task or between the last task and the end event. That may not be correct in a formal
sense because the output is not passed to the end event, but it is intuitive and therefore
workable at the strategic level.

110 3 Strategic process models

R
ec

ru
iti

ng
 p

ro
ce

ss

O
ur

 c
om

pa
ny

Job
advertisement

Application
submission

A
pp

lic
an

t

Application
checking

H
iri

ng
 d

ep
t.

Vacancy
filling

Vacancy arises

Report vacancy
H

um
an

 R
es

ou
rc

es

D
ep

t.
Vacancy filled

Contract signed

Application
(postal mail,
email)

Job advertisement
(website, job sites)

Vacancy notification
(email)

FIGURE 3.11 Data objects indicate forwarded information.

3.3.6 Custom artifacts

As described in Chapter 2, you can add your own symbols to BPMN as long as you only
use them as artifacts. You can connect artifacts only by associations to flow objects (tasks,
gateways, or events) to prevent them from influencing the sequence flow. They represent
references to things beyond the main sequence.

In our experience, artifacts are well suited to the strategic level for meeting the particular
requirements of your process owners. One classic is to represent the software systems used
for individual tasks of subprocesses. We usually use a cuboid for this. The cuboid is used
for the same purpose in Unified Modeling Language (UML) use case diagrams, which is
why it makes sense to us.

When we ask what IT systems the recruiting process uses, Robert says, "So far almost none.
The job description is created in Excel; all the other things are done without any special
software." Find the corresponding representation in figure 3.12.

z

R
ec

ru
iti

ng
 p

ro
ce

ss

O
ur

 c
om

pa
ny

Job
advertisement

Application
submission

A
pp

lic
an

t

Application
checking

H
iri

ng
 d

ep
t.

Vacancy
filling

Vacancy arises

Report vacancy

H
um

an
 R

es
ou

rc
es

D

ep
t.

Vacancy filled

Contract signed
MS Excel

FIGURE 3.12 Software use is restricted to Microsoft Excel.

3.3 Restricting the symbol set 111

Depending on the industry and the particular needs, you can introduce custom artifacts
for completely different purposes. Suppose the insurance sector faces regulatory pressure
regarding minimum requirements for risk management. This makes identifying risks in the
process documentation necessary; you can use a custom artifact to flag the risks associated
with execution of tasks and subprocesses.

3.3.7 Hide and reveal symbols

You can see the extensions added to the recruiting example for milestones, data forward-
ing, and IT systems in figure 3.13. This information is particularly helpful for discussing a
process, but because they tend to overload a diagram and add to the potential confusion,
not all users of the diagram will want to see them. It is useful to be able to hide and reveal
the extra symbols as needed. This is a question we often get in our BPMN workshops; here
are our notes:

■ Hiding and revealing is not a feature of the notation. This feature must be provided by
the BPMN tool you work with.

■ Several of the BPMN tools make it easy to hide and reveal artifacts such as data, annota-
tions, or custom symbols.

■ Hiding and revealing is more complicated for none intermediate events because they at-
tach to the sequence flow. When you hide them, you get unexplained and unsightly gaps
unless your tool is intelligent enough to rearrange the diagram accordingly. (Suppose an
XOR merge was applied before an event that suddenly became redundant because the
arrows could enter the task after the event directly.) So in general, hiding and reveal-
ing flow objects like activities, events, and gateways is problematic, which is why most
BPMN tools do not provide a hide-reveal feature, or they limit its function.

R
ec

ru
iti

ng
 p

ro
ce

ss

O
ur

 c
om

pa
ny

Job
advertisement

Application
submission

A
pp

lic
an

t

Application
checking

H
iri

ng
 d

ep
t.

Vacency
filling

Vacancy arises

Report vacancy

H
um

an
 R

es
ou

rc
es

D

ep
t.

Vacancy filled

Contract signed

Applicant
selectedJob advertised

Application
(mail, email)

Job advertisement
(website, job sites)

Vacancy notification
(email)

MS Excel

FIGURE 3.13 The recruiting process, including milestones, data, and IT systems.

112 3 Strategic process models

3.4 Process analysis on the strategic level
After making our first, rough survey of the recruiting process and documenting it, we can
do two things:

1. We can start a detailed survey to model the actual state of the process at the operational
level.

2. We can content ourselves with the documentation at the strategic level.

The choice depends on the purpose of the model. If we aim for ISO certification, or if we
want to provide the model to process participants as a guide for their daily work, it needs
to be more detailed.

Recall that our Human Resources manager is unhappy with his process, and he wants to
embark on a project to improve it. He has described the symptomatic weaknesses. Re-
membering the BPM life cycle, we can now start with analysis to get to the bottom of the
weaknesses and devise ideas for improvement (figure 3.14). A detailed survey and docu-
mentation of the current state can be helpful for this analysis, but to be honest, the cost-
benefit ratio is high enough to discourage it in practice. More often than not, we use the
strategic process model to guide our search for causes during analysis.

Process
documentationProcess survey

Process
design

Process
implementation

Process
controlling

Process
analysis

Existing
process

New process

Yes

No

Weak points?

Current state
process model

Target state
process
model

Current state
process
model

Continous until process
improvement is required

Diagnose problems
Search for causes
Estimate potential

Modeling
Target state concept
Process simulation
Assessment of alternatives
ROI estimate

Change management
Conventional IT projects
Process automation

Workshops
Interviews
Monitoring

Modeling
Process maps
Flow diagrams

BPM governance

FIGURE 3.14 Process analysis in the Camunda BPM life cycle.

How does searching for causes work? The main thing is that we listen. We listen not only to
the process manager, but also to the customer of the process and, of course, to the process
participants. How we proceed and what tools we use always depends on the complexity
of the process, but a workshop or two involving these three parties is usually enough to
identify the weak points of the process and their causes. We don’t want to discuss the in-
terpersonal and political aspects —these quickly become a problem in such workshops.
Perhaps they are a topic for a different kind of book.

Here we draw a brief picture of a workshop called Analysis of potentials in the recruiting
process. The participants are:

3.4 Process analysis on the strategic level 113

■ Process manager: Robert.

■ Customer: Falko, Sales Manager and representative of the hiring departments.

■ Process participants: Marina, Christine, and Stefan, clerks in the Human Resources De-
partment.

■ Process analyst: you!

After the usual introductions and explanations of purpose, you display the process model
from figure 3.13 on page 111. You let it sink in. You apply your well-honed skills as a mod-
erator to engage the participants in analyzing weak points. You list an obvious symptom,
for instance, and ask the participants to confirm, correct, or amend your observation. You
write the results on red index cards and attach them to a white board. They are:

■ The process takes too long.

■ The process is too intricate.

■ The process is not transparent enough.

The complaint about the long processing time comes from Falko. Robert complains about
the intricacy of the processing. Both of them agree that more transparency is needed to
support comprehension of the process in whole and in its parts.

Working with the participants, you then extract the causes that account for the symptoms.
Step by step, you identify and list on your red cards the causes of the causes. Some of the
symptoms or causes may be attributable to a certain subprocess or task, and this will be
well marked by the card affixed next to it. Other symptoms and causes will apply to the
process as a whole.

All the workshop participants quickly agree that too many activities in the process are exe-
cuted manually. "There must be a technical solution," is a unanimous verdict.

Robert’s criticism that the vacancy notifications from the hiring departments are often in-
complete, unclear, or incorrect, is of course not received enthusiastically by Falko, but Falko
cannot deny that mere notification is usually insufficient. More clarifying details have to
change hands between the hiring departments and HR.

For his part, Falko faults the Excel template provided by HR for the notifications. "These
things are a catastrophe! Confusing and without any assistance or explanation. You can’t
even see which details are mandatory and which are optional!"

One ticklish issue involves holding times: the periods between task assignments and when
they actually occur. Robert and Falko blame each other. They accuse and defend their re-
spective staffs without useful facts to back up their statements. At this juncture, you, as
diplomatic moderator, get the squabblers to agree that excess holding times harm the pro-
cess, but that the causes cannot yet be clearly established nor responsibility apportioned.

The result of the workshop is the causal chain as shown in figure 3.15 on the next page. You
deduce four solutions to be pursued within the scope of an improvement project:

■ Reduce manual activities.

■ Minimize correction loops.

■ Make the current status of each operation visible at all times.

■ Record and assign responsibility for idle times.

You may suppose that the solutions will be IT-enabled, though that’s not always the case in
practice. We do not mean to suggest that software is the solution to every problem. BPMN

114 3 Strategic process models

Process takes too
long

Process is too
intricate

Process is not
transparent enough

Manual job
advertisement

required

Forward paper
applications

by internal mail

Initial screening of
applications by clerk

required

Check for
completeness

Check for hard
criteria

Manual entry on
company website

Manual entry on job
sites

Too many manual
operations

Inquiries on vacancy
notification required

Job
advertisement

Excel form is
unmanageable Report

vacancy

Vacancy notification
often incomplete /
incorrect / unclear

Job
advertisement

Too many correction
loops

Unclear: Tasks are
held too long?

Current state of
individual instances

hard to establish

Distributed processing
by process participants

Process participants
not always available

Unclear: Late
processing of vacancy

notifications by HR
Department?

Unclear: Hiring
department not

available for inquiries?

Unclear: Late
feedback of hiring

department on
candidates?

Job
advertisement

Job
advertisement

Job
advertisement

Application
checking

Application
checking

Application
checking

FIGURE 3.15 Causal chain, showing weaknesses and their causes.

development started with the need to improve processes by means of IT, however, and that
is why our example reflects that kind of scenario.

In the BPM life cycle, you now enter the process design phase to devise an improved target-
state process. This is the time for the operational level.

3.5 Conversations and choreographies
The possibilities provided by BPMN for modeling conversations and choreographies
haven’t yet established themselves in real-world situations. We don’t find them in our
customers’ projects, and we only use them on rare occasions. If you’re interested, the next
section provides some thoughts about using them in the described use case.

Looking at the recruiting process as a conversation (figure 3.16 on the facing page), two
possibilities present themselves: In the simplest case, just represent that there are three
participants in the process and that they are conversing with each other. The other pos-
sibility is to add a multiple symbol to the applicant to show that, while only one hiring
department and the Human Resources Department participate in the conversation, more
than one applicant may participate. Certainly it helps to indicate the different cardinal-

3.5 Conversations and choreographies 115

ities, but the success of doing so depends on users who understand the symbols. Apart
from that, the conversation diagram is good for representing all the parties in a single view.

Hiring department

Human Resources
Department

ApplicantRecruiting

Top-level conversation
Sub-conversation

Recruting

Hiring department

Report
vacancy

Advertise Job

Submit
Application

Fill Vacancy

Human Resources
Department

Check
Application

Applicant

FIGURE 3.16 The recruiting process conversation at two levels of granularity.

We can refine this conversation and fully model its sub-conversations. The plus sign in the
hexagon of the top-level representation indicates a refinement similar to the symbol for
a subprocess in our process diagrams. We can see in the refined representation that not
all the participants participate in all sub-conversations. The applicants, for example, do
not participate in the vacancy notifications; the hiring department doesn’t participate in
posting the job.

There’s a semantic problem with this representation: The job posting is not a message re-
ceived directly by the applicant; it is modeled by means of the conversational relationship.
We tend to allow the semantic flaw in the interests of clearness and comprehensibility, just
as in our process diagrams. One advantage a conversation diagram has over the sequen-
tial representation in a process diagram is that we can take the different communications
relationships between participants into account without having to accept a complicated
representation with multiple pools and their related message flows.

The representation as a choreography in figure 3.17 on the next page is even more precise
because it also considers the order of communication. We can see the different messages.
It is a mixture of conversation and process diagrams because we still see the various par-
ticipants in the choreography of tasks and subprocesses. One advantage in this is the more
differentiated examination of cardinalities: The job advertisement takes place once, and it
is a message from the Human Resources Department to a number of applicants. (No, the
semantics are not really correct, but we accept this for simplicity’s sake.)

In the next, application submission step, multiple applicants send their applications to the
Human Resources Department. It is correct to represent application submission without a
multiple instance, because this subprocess is executed only once by each applicant. The
application check, conversely, is executed as often as applications are received, in other
words, multiple times. It is completed separately for each applicant, however, which has
its effect on the applicant communication partner. Each applicant gets a separate invi-
tation and a separate interview, so the applicant gets no multiple instance symbol in this

116 3 Strategic process models

Vacancy
arises

Vacancy
filled

Contract signed

Vacancy
notification

(email)
Job advertisement
(website, job sites)

Job advertised Applicant
selected

Application
(postal mail, email)

Report vacancy

HR Dept.

Hiring Dept.
Job

advertisement

HR Dept.

Applicant

Application
submission

HR Dept.

Applicant

Application
checking

HR Dept.

Applicant
Hiring Dept.

Vacancy
filling

Applicant

HR Dept.

FIGURE 3.17 The recruiting process as a choreography.

subprocess. The last subprocess, vacancy filling, takes place only once, and the chosen
applicant signs a contract.

The advantage of the choreography diagram is that it compactly represents the commu-
nications relationship between process participants. It is ideal for providing overviews of
communication-intensive processes. The question is if choreography diagrams can be un-
derstood and accepted by target groups at the strategic level. In our experience, it is hard
enough to introduce the regular symbols of BPMN to such groups.

4 Operational process
models

4.1 About this chapter

Strategic process model

Operational process model

Human
process flow

Technical
process flow

Process overview
Fast comprehension
Logically abstract

Operational processes
Coordinate details between
human process flow and technical
process flow (automation)
Physically specific

Content:
Goal:

Semantics:

Content:
Goal:

Semantics:

FIGURE 4.1 Operational process models in the Camunda house.

4.1.1 Purpose and benefit

It is at the operational level that process models begin to reveal operational details in the
form of human and technical flows. Process participants reference operational process
models (the human flows, that is) every day. Process analysts examine them to identify
improvements. Also, operational process diagrams can be the starting point for technical
process implementation in the form of technical flows —ideally by a workflow engine. The
operational process model obviously describes more detail than does the strategic model,
but this leads to a problem:

A whole process is a complex interaction between people and IT systems as they carry out
tasks. The process analyst is concerned with getting to the heart of these interactions so
that he or she can devise organizational or technical improvements. The analyst’s question
is:

How is the work done, and how can we do it better?

118 4 Operational process models

The process participant only cares about the aspects of the process that concern him di-
rectly. He wants to know:

How should I do my work?

When a process requires technology to be implemented, the process engineer gets involved.
He or she has to understand what the technical implementation is meant to achieve from
a functional point of view. The process engineer asks him- or herself:

What does the engine have to achieve?

It isn’t easy to reconcile the three roles, and answering their questions is the challenge of
the operational level. If you meet the challenge successfully, the benefits are:

■ The logic of the operational process model is consistent between operations and the
technical implementation. In other words, the process actually works as documented.

■ The understanding gap between business and IT shrinks. The parties can discuss the
same process model, and they can recognize both the technical effects of business re-
quirements and the impact technical implementations may have on operations.

■ If the process is implemented by a workflow engine, monitoring and reporting on the
process can become much more substantial and immediate.

In short, if you master the operational level, you will have found the common language of
business and IT —at least as far as process modeling is concerned.

4.1.2 Model requirements

Just as with the strategic level, operational process diagrams must be syntactically correct.
Although some semantic irregularities can be tolerated at the strategic level, we can’t allow
them in operational models. The operational level describes how work is actually done, so
there can be neither contradictions in content nor formal mistakes.

As you develop the operational model for any project that includes technical implementa-
tion by means of a workflow engine, another requirement arises: All the questions that the
process engineer must ask to understand the desired outcomes need to be answered. After
all, the technical model itself becomes executable.

Precision serves the process participants too, because they should be able to refer to the
model for how to accomplish the work. At the same time, it is best not to burden partici-
pants with complexity that doesn’t serve them. After all, the participants’ core competence
is the work itself, not BPM. For participants, the process model is just a means to an end,
something they may reference only once in a while.

4.1.3 Procedure

An operational process model has to be sufficiently precise but not overly complicated. To
achieve that apparently contradictory goal, we provide a view of the process model specific
to each role. Figure 4.2 on the facing page depicts what we mean. If the process participants
see a view that represents only their perspective, they are satisfied. The participants know
what to do and when to wait for others to complete their portions of the process without
being distracted by the details of what the others do.

4.1 About this chapter 119

Level 2: Operational
process model

Process participant Process analyst Process engineerViewer

How should I do my
work?

How is the work
done?

What does the
engine do?Central problem

Own orchestration Entire collaboration Orchestration of the
workflow engineView

FIGURE 4.2 The roles and their views at the operational level.

The core idea of the operational level is to differentiate consistently between orchestration
and collaboration. As explained in section 2.9 on page 78, each participant gets his or her
own pool. This presents the participant’s experience as its own, closed process. Reserve the
diagram that shows the collaboration among these processes for the process analyst, who
presumably can handle the complexity.

Treat the workflow engine as a participant with its own pool, and the process engineer can
focus on it. Note that in this approach we are following the BPMN idea of a conductor for
each pool who controls its processes. BPMN presumes a workflow engine even when a
human serves in place of an actual workflow engine.

Aside from the improved views, this differentiation is important because in practice, the
entire process is almost never controlled completely by a workflow engine. There are al-
ways decisions to be made and tasks to be carried out by humans. To represent the process
completely in a model, we have to account for the human activities. We accomplish this
when we assign a separate pool to each participant, whether human or not.

The process analyst plays a major role in achieving a differentiated model. He or she must
comprehend BPMN fully and be able to model the process from different participants’
points of view. If the target state process is to be implemented in a workflow engine, he
or she must develop and maintain the model in all its representations, from the strategic to
the technical.

This is an example of the process analyst’s steps:

1. Review the target state process at the strategic level. (See chapter 3.)

2. Resolve the lanes into separate pools. (See section 4.2 on the following page.)

3. Model the human flows, that is, the target-state process from each participant’s point
of view.(The participants and the process manager must settle upon these details. See
section 4.3 on page 122.)

120 4 Operational process models

4. Model what the participants do that will be supported by the workflow engine and how
it will do so. This also must be settled between the manager and participants. (See
section 4.4 on page 125.)

5. Model the technical flows, at least to the extent that these can be derived from the par-
ticipants’ processes. The process analyst or the process engineer can do this. The op-
erational model won’t be directly executable, but the process engineer can enhance the
model for that purpose. (See section 4.4.2 on page 127.)

6. Finalize and document other requirements such as templates, data, and business rules.
Group these around the process model by referencing them from their relevant symbols
in the diagram (See section 4.4.3 on page 129.)

This is only one approach. If it makes sense to you, you can start from the technical flow
and work bottom up, or you can work outward from an operational process model. Fre-
quently, it is the operational process model that comes into existence first because the
business and IT got together during a workshop, and they developed the human and tech-
nical flows concurrently.

After developing the model, show the views to the people affected. This takes a tool with
good presentation functions. The ability to expand and collapse pools is especially valu-
able, since the expand/collapse function means you can avoid having a lot of different di-
agrams with redundantly modeled pools. For more on tool support for BPMN in general
and our framework in particular, see section 7.4.2 on page 204.

4.2 From the strategic level to the
operational level

We often create a strategic model of the process before we model it at the operational level.
For our recruiting process example, we created the strategic process model in section 3.2
on page 101. We depicted it in figure 4.3 on the next page, and in section 3.4 on page 112, we
discussed the process’ weak points. We learned that the process sequence itself is not that
bad; most of the friction comes from insufficient technological support. Now the process
modeling needs to extend to the operational level. First, we’ll examine the sequence solely
from an organizational standpoint. Second, we’ll think through what a workflow engine
can contribute to improving the process.

Chapter 3 described how strategic process models often contain semantic contradictions.
These make it impossible to refine the model directly, but strategic views often differ sig-
nificantly from operational views. You can assume that a strategic process model rarely
changes. At the operational level, you can expect changes more often. That’s another rea-
son for the principal structure of models at this level to be technically compatible with the
even more detailed implementation models to follow.

As a consequence, while we will reference the strategic process model often, we have to
develop the operational model afresh. That may sound like a problem, but in practice it
usually is not: The strategic model doesn’t take that much time to create, and it achieves
clarity about strategic purposes and outcomes that you shouldn’t need to revisit while de-

4.2 From the strategic level to the operational level 121

R
ec

ru
iti

ng
 p

ro
ce

ss

O
ur

 c
om

pa
ny

Job
advertisement

Application
submission

A
pp

lic
an

t

Application
checking

H
iri

ng
 d

ep
t.

Vacancy
filling

Vacancy arises

Report
vacancy

H
um

an
 R

es
ou

rc
es

D

ep
t.

Vacancy filled

Contract signed

FIGURE 4.3 The recruiting process at the strategic level.

veloping at the operational model. Also, because the strategic level changes so infrequently,
you need not worry about duplicating effort to maintain it through updates.

The recruiting process example has a semantic difficulty at the strategic level: the differ-
ent cardinality of instances. It looks as though every applicant for a job gets that job, even
though everyone understands that’s not the real-world expectation. Everyone assumes that
the normal course of events is that several applicants submit applications, that Human Re-
sources checks a corresponding number of applications, and that a single applicant ulti-
mately fills the vacancy. Another difficulty is that we don’t know our applicants nor their
number. These are two reasons that, when it comes to creating an operational model, we
cannot represent the applicant as a lane in the same pool as the other participants.

A valid operational model also has to specify the interaction between the hiring depart-
ment and Human Resources more realistically. It’s not as if HR carries out the job adver-
tisement and application checking tasks without consulting the hiring department. The
process analysis (section 3.4 on page 112) showed that the two departments communicate
actively; it is the ineffectiveness of their communication that causes most of the friction
and ambiguity. What makes the most sense therefore is to model the processes of these
participants in separate pools. That allows an explicit examination of the organizational
interfaces. It also allows us to provide each participant with information relevant to his
or her role, and we can exclude irrelevant information. Irrelevant information is a huge
over-complication!

Figure 4.4 on the following page shows the recruiting process after moving the lanes into
separate pools and accounting for the activities that require exchanges between partici-
pants. The applicant still reacts to the signal of a job being advertised, but the three short
lines at the bottom center of the applicant pool indicate that there potentially are multiple
applicants. (Refer to section 2.9.5 on page 84.) The possibility of multiple applicants is why
we modeled an AND split after the message application received event; it shows that HR is
not waiting for a single application but will instead process any applications received. The
terminate event at the end of the HR pool means that this activity will continue only until
an applicant is selected and successfully employed.

122 4 Operational process models

H
iri

ng
 d

ep
ar

tm
en

t

Job
advertisement

Application
submission

Application
checking

VAcancy
filling

Vacancy
emerged

Report vacancy

Vacancy filled

Contract signed

Vacancy filled

H
um

an
 R

es
ou

rc
es

A
pp

lic
an

t

To clarify To clarify

To clarify To clarify

Read
advertisement

Application
received

Notification on
vacancy
received

FIGURE 4.4 Start of transfer to the operational level.

Open issues remain to be settled and modeled. Not only do we have to define the to be
clarified activities, but we have possible special cases to account for. What if:

■ an applicant is rejected as unqualified?

■ not even one applicant is qualified?

■ not even one application is received?

Examining this entire process at the operational level easily could exceed this book’s goal
of illustrating principles and methods. In the following sections, therefore, we elaborate
only on the part starting with identifying the personnel requirement through advertising
the job. (To explore the complete example, visit BPM-Guide.de/BPMN.)

4.3 Processes of the participants
As already described, the process analyst models processes at the operational level. Where
does he or she get the operational details needed? Usually from the process participants
themselves, that is, the people working in the process. For the post a job process, we’ll
interview Falko first, because he’s the manager of the hiring department. Falko describes
his contribution this way:

"When I see that we need a new staff member, I report the vacancy to Human Resources. I
then wait for them to send me the job description so that I can check it before they publish
the advertisement. I may have to request a correction to the job description, but otherwise
I release it. And sometimes HR has additional questions about tasks or qualifications, so I
make myself available for clarifications."

4.3 Processes of the participants 123

When we model Falko’s process, we may include the Human Resources clerk in the diagram
to complete the picture. When we collapse the clerk’s pool, however, figure 4.5 results.

Report vacancy

H
iri

ng
 d

ep
ar

tm
en

t m
an

ag
er

Personnel
requirement

Communicate
tasks and

requirements

Review job
description

Request
correction

Release job
description

No

Yes
Description

released

OK?

Human Resources clerk

Description
received

More
information

required

FIGURE 4.5 The post a job process from the hiring department manager’s point of view.

Note: BPMN 2.0 does not allow sequence flows to flow directly into an intermediate event
following an event gateway. This prohibition seems unnecessary to us, and we advocate
that it be removed in future versions of the specification. For the time being, try represent-
ing this type of scenario as shown in figure 4.6.

Report vacancy

H
iri

ng
 d

ep
ar

tm
en

t m
an

ag
er

Personnel
requirement

Communicate
tasks and

requirements

Review job
description

Request
correction

Release job
description

No

Yes
Description

released

OK?

Human Resources clerk

Description
received

More
information

required

Description
received

Description
received

FIGURE 4.6 The current version of BPMN 2.0 requires this representation, which seems
inefficient and unnecessary.

Christine, the Human Resources clerk, has a different point of view about the post a job
process: "When a job vacancy is reported to me, I write a job description based on the
details I’m given," she says. "If there are ambiguities in those details, I have to ask the hiring
department about them. After I finish the description, I submit it to the hiring department
for it to be checked, then I wait for it to be released. Sometimes they do that right away,
but sometimes they reject it and ask for corrections. In that case, I correct the description
and submit it again to be checked. Once the description is finally released, I publish the
advertisement for the job."

When we collapse Falko’s pool and show Christine’s, the result looks like figure 4.7.

H
um

an
 R

es
ou

rc
es

 c
le

rk

Ask for tasks
and

requirements

No

Write job
description

Yes
Correct job
description

Job advertised

Everything
clear?

Vacancy
reported

Correction
requested

Advertise job

Hiring department manager

Description
released

Review
notification

FIGURE 4.7 The post a job process from the Human Resources clerk’s point of view.

124 4 Operational process models

What have we achieved so far? We have explicitly modeled the operational details of the
post a job process. At the same time, we created two process models that are not overly
complicated on their own.

The consumers of our models must have some basic knowledge of BPMN. They must:

■ understand events —intermediate events in particular.

■ understand the difference between a data-based and an event-based gateway.

■ understand the difference between the sequence and the message flow.

The burden on the users of our models is greater at the operational level than it is at the
strategic level. The first target audience for the operational level is the process analyst, who
can use the model as the basis for a detailed analysis as well as for an IT implementation.
We show this later. In all likelihood, the process analyst developed the model in BPMN, so
his or her understanding of the model can be presumed.

The second target audience is the participants whose work the model represents —Falko
and Christine. They should be partners with the process analyst in a dialog about improve-
ments, and they should at least understand the models. You may find them both later using
the diagrams as a guideline for their work, helping to answer the questions "How should I
do my work?" and "What do I have to do next?"

So, will participants like Christine and Falko accept the models? Our experience shows that
they will, provided that:

■ Each participant sees only his or her own pool and not the full complexity of the process.
This requires that the process model be developed accordingly and an adequate tool
used to present it.

■ The participants were provided with a basic briefing on BPMN, and a simple key or leg-
end to explain the symbols. As the process analyst, you probably will have to do the
instruction yourself. Tools often provide a key or legend.

Of course we can view post a job as a whole by expanding both pools, and we can show it to
Christine and Falko as a detailed collaboration diagram (figure 4.8 on the next page). But
isn’t it obvious how much more complicated this diagram is, compared to separate views
of the pools? Would the process participants be more likely or less likely to accept and
use the more complex diagram? In any event, the entire collaboration only matters to the
process analyst. In the following two sections, we will deal with collaboration diagrams as
we consider process automation.

BPMN provides the option to hide the complexities of the collaboration in a choreography
diagram (figure 4.9 on the facing page). The advantage is that this represents the inter-
action between participants more compactly. It is therefore good for orienting the pro-
cess analyst. On the other hand, a choreography diagram omits internal steps that do not
help communication between participants. You can’t see, for example, that the Human Re-
sources clerk executes the advertise job task. We regard choreography diagrams as some-
times useful additions to operational level collaboration diagrams, but usually they can’t
take the place of collaborations.

4.4 Preparing for process automation 125

H
um

an
 R

el
at

io
ns

 c
le

rk

Ask for tasks
and

requirements

No

Write job
description

Yes
Correct job
description

Job advertised

Everything
clear?

Vacancy
reported

Correction
requested

Advertise job

Description
released

Report vacancy

H
iri

ng
 d

ep
ar

tm
en

t m
an

ag
er

Personnel
requirement

Communicate
tasks and

requirements

Review job
description

Request
correction

Release job
description

No

Yes
Description

released

OK?Description
received

More
information

required

Review
notification

FIGURE 4.8 Post a job as a collaboration diagram.

Personnel
requirement

Report vacancy

HR clerk

Manager

No

Yes

Everything
clear?

Write job
description

HR clerk

Manager

Ask for more
details

HR clerk

Manager

Request
correction

HR clerk

Manager

Release job
description

HR clerk

Manager

No

Yes

Correct job
description

HR clerk

Manager

Job advertised

OK?

FIGURE 4.9 Post a job as a choreography diagram.

4.4 Preparing for process automation
Describing a process from an organizational perspective is only one task of modeling a pro-
cess at the operational level. It’s not even the most interesting task! The holy grail actually
is the smooth transfer from human to technical flows, in other words, from the functional
to the executable process model.

In section 1.1.4 on page 5, we show how an executable process model can be interpreted di-
rectly by a workflow engine to combine human workflow with service orchestration. Since
this is also central to the IT perspective on BPM, we focus on this approach in the following
sections and in Chapter 5 (see figure 4.10 on the following page). An alternative would be
to implement the process logic without a workflow engine, but in a general programming
language such as Java or C#. That’s a scenario we’ll address in section 4.4.5 on page 132.

4.4.1 Designing for support by a workflow engine

The desired technical implementation for a process can be discussed and documented
with the models we did for the individual participants. Let’s now consider the participants

126 4 Operational process models

Strategic process model

Operational process model

Human
process flow

Technical
process flow

Process overview
Fast comprehension
Logically abstract

Operational processes
Coordinate details between
human process flow and technical
process flow (automation)
Physically specific

Content:
Goal:

Semantics:

Content:
Goal:

Semantics:

FIGURE 4.10 We focus on the transfer from human to technical flows.

as users of software, and let’s see what performance they expect from an automated pro-
cess. In this thought experiment, the workflow engine itself becomes a participant with
which the user exchanges messages.

Falko, as hiring department manager, describes the desired support in the post a job pro-
cess:

"I record a vacancy in a form on our portal and then send it. If the job description is ready
to be checked, I want to see it in my to-do list on the portal. I process the task by reading
the description, and I either request corrections or I release it. After the job advertisement
runs, I want a short email notice that everything worked out."

If you remember Falko’s process model from figure 4.5 on page 123, you will recognize his
description, but there are two major differences:

■ The Human Resources Department’s reaction to requests is not to be shown as a task on
the portal. It is still processed by email or phone.

■ The confirmation message about successful postings is new.

Now we expand on the process model:

■ We subdivide it into lanes called HR portal and Other.

■ We assign all the tasks to be executed on the portal to its lane. For our purposes, a mes-
sage event represents a human task that displays in the task list. A task with an outgoing
message flow means that the user has completed a human task. The XOR gateway shows
that the task may have different results, such as request correction or release job descrip-
tion.

■ The first task in the HR portal lane is "report vacancy. This is not a task that was assigned
to the user by the workflow engine because it does not follow the corresponding message
event. It is possible, however, for the user to trigger the process, that is, to effect an
instantiation. If so, the workflow engine must provide the corresponding option, usually
by means of a form available on the portal, which can be filled in at any time.

■ The request made by the Human Resources Department, as well as the reaction to it, are
assigned to the Other lane because neither are realized on the portal, but rather through

4.4 Preparing for process automation 127

the usual channels: phone or email. The message conveying that the advertisement
was published also belongs in the Other lane. Although the workflow engine sends that
message, it reaches the user by email, and not as a notification in the portal.

The result is in figure 4.11, which shows the workflow engine as another participant, but
still with the pool collapsed.

Workflow engine

Report vacancy

H
iri

ng
 d

ep
ar

tm
en

t m
an

ag
er

Personnel
requirement

Communicate
tasks and

requirements

Review job
description

Request
correction

Release job
description

No

Yes

Job advertised

OK?Description
received

More
information

required

H
R

 p
or

ta
l

O
th

er

Advertisement
successful

FIGURE 4.11 IT support of the hiring department’s manager regarding the job posting.

Now we learn something new from Christine, the Human Resources clerk: "A vacancy re-
port appears as a new entry in the task list of the HR portal. This is where I write the job
description and then forward it to the hiring department for verification. Forwarding it
completes the task. If I have to correct the description, that comes up on my task list too.
If the hiring department releases the job description, however, I essentially receive notice
by the appearance of an initiate advertisement task. In that case, I specify the advertis-
ing channels on the portal and then initiate the advertisement. If the advertisement runs
successfully, I want a short notice that everything worked out."

Applying the principles discussed in this chapter results in figure 4.12, but with one dif-
ference: The user doesn’t trigger the process any more. Falko already took care of this.
Christine only has to react to the new entry in her task list on the portal. You will recognize
this by the start event of the message type.

H
um

an
 R

es
ou

rc
es

 c
le

rk

Ask for tasks
and

requirements

No

Write job
descriptionYes

Correct job
description

Specify
channels for

advertisement

Job advertised

Everything
clear?

Vacancy
reported

Correction
requested

Trigger
advertisement

Workflow engine

Description
released

Advertisement
succesful

H
R

 p
or

ta
l

O
th

er

FIGURE 4.12 IT support of the Human Resources clerk.

4.4.2 Required processes of the workflow engine

We will now define the first version of the technical flow. As process analysts, we don’t need
as much input from the process participants now. We can turn our attention to the pro-
cess engineer. We consult with the process engineer to determine how to implement the

128 4 Operational process models

process with the workflow engine. We show the pools of the human participants in a col-
laboration diagram, and we expand the pool of the workflow engine as another participant,
dividing the workflow engine pool into three lanes:

■ The hiring department manager gets a lane, as does the Human Resources clerk. All the
tasks placed in these lanes are user tasks, which is to say, tasks for humans to complete.

■ The third lane is for fully automated tasks. These are things like interface calls (service
tasks) or internal program fragments (script tasks). You can also store whole subpro-
cesses in this lane.

The process steps to be implemented in the engine result directly from the behavior of
users Falko and Christine. The process starts because Falko reports a vacancy by filling in a
form on the portal. He sends it, which is represented by the start event of the message type.
The workflow engine then assigns the write job description task to Christine. Once Chris-
tine completes her task, the engine assigns the check job description task to Falko. Falko
can either release the description or ask for a correction. Depending on Falko’s choice, the
engine will assign either trigger advertisement or correct job description to Christine. If she
has to correct it, the job description returns to Falko as another check job description task.
This loop repeats until Falko releases the job description.

The engine assigns trigger advertisement to Christine after Falko releases the description.
First, she has to specify the channels through which the job is to be advertised, and then
she has to initiate the action. This tells the engine that Christine has completed trigger ad-
vertisement. The engine then executes the publish advertisement subprocess, which con-
sists mainly of interface calls. (It is encapsulated as a subprocess at this point in order
to avoid overloading the diagram.) At the end, the workflow engine sends confirmation
emails to both Falko and Christine to inform them that the advertisement was successfully
published.

The collaboration diagram in figure 4.13 on the next page shows the technical process flow,
which is executable in the workflow engine. There is some redundancy within the diagram
because the users are represented in their own pools, but they also have lanes in the pool
for the workflow engine. This is important for separating responsibilities: The participants
always decide on the routing within a pool, that is, they determine which path exits an XOR
gateway.

Christine, for example, decides if she can write the job description without further input
or if she has to get Falko to clear up discrepancies. The workflow engine can’t do that; it
doesn’t even notice this decision. On the other hand, the workflow engine does decide if
Christine needs to execute correct job description or trigger advertisement next because the
corresponding XOR gateway is in its pool. The workflow engine makes this decision based
on Falko’s decision following his review.

Our collaboration diagram solves a problem that arises frequently when attempting to
evolve a functional (operational) process model into an executable one: mixing control
instances in a single pool. As we keep saying, people and workflow engines almost always
have their respective decisions to make within a process. Until you segregate control in-
stances into appropriate pools, it will be difficult to achieve a model that you can execute
in a workflow engine.

Another advantage to this approach is that we still can present views optimized for our
targeted groups of users:

4.4 Preparing for process automation 129

H
um

an
 R

es
ou

rc
es

 c
le

rk

Request tasks
and

requirements

No

Write job
descriptionYes

Correct job
description

Specify
channels for

advertisement

Job advertised

Everything
clear?

Vacancy
reported

Correction
requested

Trigger
advertisement

Description
released

Advertisement
successful

H
R

 p
or

ta
l

O
th

er

Report vacancy

H
iri

ng
 d

ep
ar

tm
en

t m
an

ag
er

Personnel
requirement

Communicate
tasks and

requirements

Review job
description

Request
correction

Release job
description

No

Yes

Job advertised

OK?Description
received

More
information

required

H
R

 p
or

ta
l

O
th

er
Advertisement

successful

W
or

kf
lo

w
 e

ng
in

e

A
ut

om
at

ic
H

R
 c

le
rk

H
iri

ng

de
pa

rtm
en

t
m

an
ag

er

Write job
description

Check job
description

Correct job
description

No

Trigger
advertisement

Yes

Advertisement
publishing

Job advertised

OK?

Send
confirmation of

success

FIGURE 4.13 Representing the job advertisement in a workflow engine.

■ The process analyst can see the entire collaboration diagram.

■ The process engineer can see only the workflow engine’s pool.

■ The process participants can see their own pools only. Not only are these pools less com-
plex than the whole collaboration diagram, but they also contain additional information
not part of the workflow engine’s pool: that inquiries are made in case of discrepancies,
for instance.

Our judgment is that this approach is the only practical way to align business and IT in a
BPMN process model.

4.4.3 Further requirements

Could our process engineer implement the process from the diagram as shown? Probably,
but there are issues still to be settled, such as the templates to be displayed and the exact
tasks in a vacancy notification or a job description. These are typical kinds of require-
ments for any software project, however, and they do not affect the process logic. We don’t
recommend documenting these requirements directly in BPMN; instead, we suggest link-
ing them to the process at appropriate points. That way, the process represents a central
starting point for requirements documentation. Of course, your BPMN tool must support
linking.

130 4 Operational process models

We have categorized typical requirements as they occur in projects for the development
of process applications in figure 4.14. Besides BPMN, we use graphic screen designs, class
diagrams, decision tables, and text to document requirements. In integration-intensive
projects, we use, among other tools, diagrams to describe system landscapes.

Type Explanation Examples Notations BPD link
Functional Functions to be

provided by the
solution

- Process logic
- Features
- Use cases
- Interfaces
- Business logic

- BPMN
- UML (use cases)
- User stories
- Acceptance tests
- General text

- Task

Non-
functional

Properties to be
met by the
software

- Service level
 Agreements (SLA)
- Response time
- Capacity
- Maintainability
- Platform compatibility

- Text - Pool

User
interface

Channels through
which the user
interacts with the
software

- Masks
- Dialog work flows
- Mobile devices
- E-mail roles

- BPMN
- Mask sketches
- User stories
- Acceptance tests

- Task

Data Data to be
processed by the
software

- Contents
- Restrictions
- Formats
- Channels
- Mappings

- ER diagrams
- UML (class
diagrams)
- Spreadsheets

- Pool
- Data objects

Rules Specifications
according to which
the software is to
decide

- Validations
- Checks
- Calculations
- Control points

- Spreadsheets
- Trees
- Text

- Task

FIGURE 4.14 Typical requirements for implementing an executable process.

You can see drafts of screens and confirmation emails for the job advertisement process
and how they link to the process model in figure 4.15 on the next page. Sometimes you
can derive the control elements to be provided on the screens from participants’ pools. We
know, for example, that Falko can release a job description or request a correction. That
may imply the need for option buttons (also known as radio buttons) on the form Falko
sees. Options representing advertising channels may be needed for Christine.

4.4.4 Technical implementation beyond the workflow engine

In your BPM projects, you often will find that you have to implement certain software com-
ponents beyond the workflow engine. For us, this happens most often with:

■ Business logic and rules

■ Screens and screen flows

■ Data transformations

Business logic and rules
Business logic is, for example, a calculation to be programmed. It is appropriate to pack-
age the calculations as services so that the workflow engine can call them through service
tasks. This builds direct reference to the paradigm of service-oriented architecture (SOA).

4.4 Preparing for process automation 131

W
or

kf
lo

w
 e

ng
in

e

A
ut

om
at

ic
H

R
 p

er
so

nn
el

H
iri

ng
 d

ep
t.

m
an

ag
er

Write job
description

Check job
description

Correct job
desciption

No

Trigger
advertisement

Yes

Advertisement
publishing

Job advertised

OK?

Send
confirmation of

success

Report vacancy
Internal designation

Tasks (headwords)

Requirements (headwords)

Start process

Check job description

Complete

Key data Your tasks Your profile

OK Not OK: <Your comment>

Job designation: [Designation]

Mode of employment: [regular/student/internship]

Mode of
emplyoment:

Regular

Contact: [HR personnel]

Reference: [ID]

Process
started

Write job description

Complete

Key data Your tasks Your profile

Job designation:

Mode of employment: [regular/student/internship]

Contact: [current user]

Reference: [generated ID]

Correct job advertisement

Complete

Key data Your tasks Your profile

<Comment>

Job designation:

Mode of employment: [regular/student/internship]

Contact: [HR personnel]

Reference: [ID]

[Suggestion by specialist dpt.] [designation]

Comment by specialist department

Trigger advertisement

Complete

Key data Your tasks Your profile

Job designation: [designation]

Mode of employment: [regular/student/internship]

Contact: [HR personnel]

Reference: [ID]

Select channels

Company websiteIntranet

Schrittstein.de BPM-Netzwerk.de

Dear [Mr./Mrs.] [name],

The reported vacancy [reference, designation] was
successfully advertised through the following channels:

- Intranet
- company website
- BPM-Netzwerk.de

We wish you all the best in chosing a candidate.

Best regards,

The workflow engine

FIGURE 4.15 Drafts of screens and email for job advertisement.

Business decisions can be represented in a decision engine, and they can be called from the
workflow engine through custom-developed, business-rule tasks. We deal with this subject
in section 4.5.6 on page 144 and section 6.2.5 on page 174.

In either case, it usually makes sense not to model the respective requirements fully in
BPMN. A better solution is simply to reference business logic or rules in the process dia-
gram through service or business rule tasks.

Screen flows
Screen flows are a borderline case because, from the process automation perspective, they
serve only to execute a single task. It also is difficult to do if the sequence of screens varies
with the entries a user makes or with the data established between screens. Screen flows,
however, are also processes. UML activity diagrams have been used often to model them,
which suggests that BPMN can as well.

Clean BPM architecture strictly separates screen flows from the process model. In other
words, a workflow engine is only loosely coupled to a screen flow application by means
of clearly defined interfaces. To be consistent about this, you have to define a separate
pool for the screen flow application and link it to the workflow engine and to the user with
message flows. From the application’s perspective, each screen flow is an isolated process.

132 4 Operational process models

If your process contains several screen flows, you must create a separate pool for each one,
even though the same screen flow application controls them all.

If that seems too complicated, or if your workflow engine combines the screen flow control
with the executable process model, you can set it aside and model the screen flow as a
collaboration between user and workflow engine. We can’t recommend doing so, however,
because it leads to process models that are less serviceable and more error-prone. It may
be a good compromise to package screen flows in an embedded subprocess.

Data transformations
Data transformations are required primarily in integration-intensive processes. A clean
BPM architecture requires that the process model be decoupled from the details of the
interface calls. At this point, the Enterprise Service Bus (ESB) comes in, and you should
represent it as a separate pool and handle it as you would a screen-flow application. You
can likewise integrate these steps directly in the process model of the workflow engine by
working with script tasks.

Script tasks represent internal steps of the workflow engine. Data transformations are an
example. You could wrap the data transformation in a service and call it through a service
task. The difference is that the transformation engine (an XSLT processor that transforms
XML data, for instance) would be a component internal to the workflow engine if it were a
script task. It would be provided by an external component —that is, from the perspective
of the workflow engine —if it were a service task.

4.4.5 Technical implementation without workflow engine

Perhaps you don’t use a workflow engine to execute the technical process flows. Perhaps
you program it in Java, C#, or another classic programming language. This doesn’t matter
for the transition from the strategic level to the operational; your compiler or interpreter
equates to the workflow engine. Doing without a workflow engine may mean that you can-
not execute the process logic directly from an operational process model. Another spec-
ification —called requirements specification, or detailed technical specification —will be
required instead before the implementation. The process diagrams developed at the op-
erational level can be integrated in this IT specification to form the basis of the technical
design.

In conventional software development, requirements are often established without an
end-to-end perspective of a process. Instead, they provide a compilation of functions that
a user executes in a specified order, depending on the process to be carried out. These
functions can be defined as applications or use cases in the design phase, which brings us
to the classic domain of the Unified Modeling Language (UML).

You can apply BPM and our framework to such projects, but remember that each use case
represents an independent process. You have to define a separate pool for each use case.
Compared to implementing in a workflow engine, the user has responsibility for linking
the use cases into a process that could be represented in a single pool.

Occasionally, the same use case can apply to different scenarios. We recommend modeling
the respective roles as simple processes that package the use cases as subprocesses. Fig-

4.4 Preparing for process automation 133

ure 4.16 shows two examples of that procedure. Between the pools, you see a UML use case
diagram that joins the use cases. This is an example that shows UML and BPMN working
well together. Figure 4.17 on the next page shows the fully modeled login use case.

R
ea

de
r

R
ea

d
pr

of
es

si
on

al
 a

rti
cl

e

Interested in
article

Login Search for
article Read article Recommend

articleYes

No

Recommendable?

Reader

Knowledge portal

Login

Search for
article

Recommend
article

Ed
ito

r
P

ro
du

ce
 p

ro
fe

ss
io

na
l a

rti
cl

e

Editor

Publish article

Every 2
weeks

Discuss subject Write article Login Publish article

FIGURE 4.16 Deriving use cases from process models.

We can state as a principle that BPMN can benefit conventional IT projects compared to
other process notations. As we pointed out earlier, however, BPMN was not developed
for that purpose but rather to support projects with a workflow engine in mind. Perhaps
the more important point is that it makes little sense to do process-intensive IT projects
without a workflow engine.

134 4 Operational process models

U
se

r
Lo

gi
n

Enter user
name and
password

K
no

w
le

dg
e

po
rt

al
Lo

gi
n

Select from
database

Show personal
welcome page

Show error
message

Yes

No

Personal
welcome page

Error message

Logged in

Login failed

User found?

U
se

r
S

ys
te

m

FIGURE 4.17 The login use case as a fully modeled collaboration of user and software.

4.5 Hands-on tips for the operational level
4.5.1 From the happy path to the bitter truth

The First Pass Yield and BPMN
The field of organizational process management defines First Pass Yield (FPY) as the "per-
centage of units that meet specifications in the first process run without need of rework or
repair."

You can well imagine that a major goal of process optimization involves maximizing FPY.
Traditional organizational process consultants have applied various analytical methods
successfully for years, but these methods are based on key figures such as error rates or
processing times. Such measures have to be either estimated or manually established in
organizational process management, methods that are laborious and error-prone.

Wouldn’t it be exciting to integrate the FPY concept into the world of modern BPM (and
BPMN)? After all, key figures can be measured with comparative ease, precisely, and in real
time by a workflow engine.

To accomplish this integration, first understand how the FPY approach works in traditional
sequence notations. Look at the sequence plan process model in figure 4.18 on the facing
page, which is suitable for FPY analysis, and which we compare to BPMN in section 2.12.3
on page 91).

Notice that there is a main path running from the top left straight down to the result. Any-
thing that needs a change follows the correction path. We can assume that the main path is
the path that the process manager desires; it is also referred to as the happy path. The prob-
ability that a result is not okay and needs correction is 30% in this model. Conversely, 70%
of the results do not need correction —that’s the FPY. We can analyze key figures recorded

4.5 Hands-on tips for the operational level 135

Result okay?

Produce result

Check result

No (30%)

Deliver result

Yes (70%)

Correct result

45 min

15 min

30 min20 min

FIGURE 4.18 A process as a sequence plan with a correction branch.

with the tasks, such as processing time, by various analytical methods to assess Key Per-
formance Indicators (KPI). In this simple example, we could state three things about the
running time of the process:

Variant Time
First Pass Yield 80 minutes

Worst Case 110 minutes

Average 89 minutes

The average here results from the calculation: (FPY * 0.7) + (worst case * 0.3) = 56 + 33 = 89
minutes. This is also called variational calculation, for which a non-iterative procedure is
applied for simplicity. The assumption is that the result must be corrected only once, if at
all, per instance.

Could we apply the FPY approach in BPMN? Generally, yes. We showed in section 2.12.4 on
page 91 how to store calculated key figures and average running times in process diagrams.
Our job advertisement case has two possible correction loops:

1. When the vacancy report is not sufficient for Christine’s purposes, she has to ask Falko
for clarification. We assume in the process model that this is required only once.

2. When Falko does not like the job description, he asks Christine to correct it. According
to the process model, this loop could repeat infinitely. We would apply a non-iterative
method to assess the key figures.

We modeled the job-advertising process at the operational level from three perspectives,
so we should apply the FPY methodology to three different pools for Falko, Christine, and
the workflow engine. If we show the process from end to end in the workflow engine, it will
be enough to examine its pool to apply the FPY approach.

The collaboration diagram (figure 4.13 on page 129) shows clearly which parts of the pro-
cess are directly captured by the workflow engine’s measurements and which are not. We
derive this knowledge from the process modeled in its pool:

1. The workflow engine can measure the running time of these tasks: write job descrip-
tion, check job description, correct job description, and trigger advertisement; and of the
advertisement publishing subprocess.

2. It can also measure the number of times the job description needs to be corrected.

136 4 Operational process models

You can analyze these key figures with an appropriate reporting engine. (Or, when in doubt,
just use Microsoft Excel for a defined number of process instances, average them, and cre-
ate colorful diagrams to make your top managers happy.) But we also see which steps the
workflow engine cannot measure. It doesn’t see the times that Christine has to repeat her
request for clarification to Falko. It therefore can’t record the rate of occurrence for these
necessary correction loops nor can it store that information for analysis. It also does not
know how long a clarification takes. From the engine’s point of view, all this is part of the
write job description task, which it assigned to Christine. This may lead to distorted mea-
surements. You need to be aware of distorted measurements, and of the three ways to
handle them:

1. Accept the distortion. After all, you know it is limited to the write job description task
only.

2. Estimate the rate of necessary clarifications and their average time. Enter these esti-
mates by hand into the database. (Of course, now you have adopted the same practice
and the same disadvantage as conventional organizational process management.)

3. Represent Christine’s inquiries as a human workflow in the workflow engine. Then you
can measure and analyze the respective rates and times in a differentiated manner. The
risk is that neither Christine nor Falko will be thrilled by this idea, and they may simply
bypass the workflow engine and settle their questions with a more efficient phone call.

As you can see, process automation is a powerful instrument for process control, but you
should be wary of overusing it. We hope you’ll also see that BPMN helps us to recognize
these limits in time and to prepare for them.

On the other hand, we have to understand that BPMN in its raw form does not provide
sufficient support for process analysis based on key figures. You can only do this with a
powerful BPMN tool that takes in the key figures —ideally from the workflow engine —and
aggregates them for functional analysis. It can do this usefully because you are a master at
producing consistent process models.

Explicit modeling of errors
Unlike other notations, BPMN explicitly models errors with event types (section 2.6.4 on
page 51). It is only a question of when to use them. In the last section, we discussed cor-
rection loops that apply only in case of errors. You would not want to use error events in
those cases, because you want to reserve error events for representing activities that can-
not complete successfully. If an activity can complete, but the result differs from what was
expected, that’s different. It isn’t always clear what every situation calls for, and there can
be gray areas. Let’s look at a simple example.

Check delivery
date

Fax order
confirmation

O
rd

er
 p

ro
ce

ss
in

g

Check
completeness

Check
creditworthiness

Order
confirmed

Order
received

FIGURE 4.19 Happy path order processing.

4.5 Hands-on tips for the operational level 137

Figure 4.19 on the preceding page shows the happy path for order processing. There are
four steps: For a new order, the order processor checks the order form for completeness,
then he or she checks the customer’s credit. The date of delivery is checked, and finally, the
processor faxes a confirmation.

Now we imagine what can go wrong, what the response is going to be in each case, and
how to represent these possibilities in the process model. To think it through, we start at
the end and work backwards. The happy path result was that the order was confirmed, so
what could lead to the order not being confirmed? Yes, theoretically, anything can happen
—even an earthquake —but practicality suggests that we deal in events with higher levels
of probability. We decide on the following:

1. The order details are incomplete.

2. The order details are illegible.

3. The customer ID is wrong.

4. The customer has insufficient credit.

5. The ordered item is not available.

6. When faxing the order confirmation, someone answers the phone and asks our fax ma-
chine if the call is supposed to be a bad joke.

Task

Result?

OK

Not OKError

FIGURE 4.20 Representing possible (and probable) problems in the process.

How would we model these contingencies in the process? As shown in abstract in fig-
ure 4.20, a task either provides us with a result, that is, information that we can assess as
OK or not OK, or there is no result, and the task can’t complete at all. If we have the infor-
mation to assess, we can model an XOR split after the task. If the task can’t complete, this
is the time for an error event. For each of the possible problems we’ve defined, we can now
construct error-handling solutions. See the fully modeled process in figure 4.21 on the next
page.

■ The order details are incomplete.

This is simple: The check for completeness succeeded, but the result is that the order is
incomplete, so processing follows the XOR split after the task to reject order.

■ The order details are illegible.

How can you check for completeness when the order is illegible? This isn’t as obvious as
when the order details are plainly incomplete, but the result is the same. If we cannot
read the details, they don’t exist for us. The order is still incomplete. (Though may be
helpful to explain to the customer why his or her order was rejected.)

■ The customer ID is wrong.

138 4 Operational process models

Check delivery
date

Fax order
confirmation

O
rd

er
 p

ro
ce

ss
in

g

Check for
completeness

Check
creditworthiness

Order
confirmed

Order
received

Complete?

Yes Yes

Creditworthy?

Reject order

No No

Order
rejected

Customer ID
wrong Not available

Find out correct
fax number

Fax number
wrong

FIGURE 4.21 Representing possible alternatives to the happy path.

Unless we can validate that the customer has the correct customer ID, we can’t make
much more progress on the order. This is a clear case for an attached error event.

■ The customer has insufficient credit.

If our process successfully checks credit, but the result is unfavorable, the result prevents
the order confirmation. The XOR split after the task sends the order to reject order.

■ The ordered item is not available.

This is not so easy, which is why you need to be pedantic. If the item is not available, no
delivery date can be established, so no check of the delivery date can succeed if the item
is not available. We have to attach an error event.

■ When faxing the order confirmation, someone answers the phone and asks our fax
machine if the call is supposed to be a bad joke.

You can probably guess how to represent this.

You may be asking yourself why it’s necessary to differentiate between error events and
XOR gateways at all. Why not just show all error cases by means of XOR gateways as other
process notations do? BPMN cannot keep you from doing that, but we recommend the
differentiation because:

■ Most people who design processes in the target state consider only some of the possible
problems. They model these in check tasks and downstream XOR gateways. But when
it comes time to implement the process, the IT people come back with questions no
one has taken into account, very often concerning situations that keep the check tasks
from completing successfully. As part of the required ping-pong between business and
IT, we document these questions with attached error events, and then we answer them
specifically. Frequently, when obtaining the answer to such a question, new check tasks
develop upstream, along with additional XOR gateways. If you placed a check availability
task before the check delivery date task, for example, you could make the error event at
check delivery date obsolete.

■ Can you ensure processes with error events in case anything goes wrong? Yes. You can
define this kind of extra safety net with an attached error event for a section within a
process, or for an entire process.

4.5 Hands-on tips for the operational level 139

■ In general, XOR gateways differentiate between cases. They can differentiate between
error conditions, and they can differentiate also between or among positive outcomes.
An example would be the different steps to determine correct size depending on if the
customer has ordered trousers versus a hat. So a happy path may not exist without XOR
gateways, but positive XOR gateways cannot be differentiated visually or syntactically
from the error XOR gateways. Error events are visually less ambiguous. Provided you
have the appropriate tooling, you can even use them to switch between a simplified,
happy path view and the complete view of the process.

The bottom line: Error events can be a good aid when modeling processes, and you should
make use of them.

4.5.2 The true benefit of subprocesses

By now, you know the several levels of our BPMN framework, and how the levels use models
with different amounts of detail. At the operational level, we also work with different views
of the same process to show only the aspect of the model that is most useful to the people
affected.

Have you wondered what role the BPMN symbol for subprocess plays in this framework?
We show in section 2.8 on page 66 that subprocesses have three main purposes in BPMN:

■ To hide the complexity of detailed sequences. Collapsed subprocesses make diagrams
more clear.

■ To make sequences modular, and thus reusable.

■ To define a scope within a process and then define how the process reacts to catching
events for the scope by attaching the events.

You can benefit from all these advantages for both strategic and operational process mod-
els. For instance, in the process model for Job advertisement, we defined the publish ad-
vertisement subprocess in the technical flow, that is, in the workflow engine’s pool. This
avoided overloading the diagram with interface calls (figure 4.13 on page 129). Another
option would be to define error processing for the entire subprocess by attaching an error
event. Because we likely won’t need this subprocess later, we should not define it as global
in our BPMN tool. Because the subprocess is embedded, and no longer an independent
module, it can be collapsed for clarity.

In BPMN, subprocesses are seldom used to indicate organizational refinements of a pro-
cess. This is why we often mix tasks and subprocesses in the same diagram. Some process
modelers who’ve trained in other methods may see this mix as an improper or unattractive
mixing of granular levels. They may prefer to reserve subprocesses for refining content, or
they want to organize their process models by making all subprocesses equally complex.
As far as BPMN is concerned, we say forget that! These other views of subprocesses make
sense, if at all, only at the level of process landscapes, and that is removed from the exam-
ination of individual processes. In your process maps, you can make wonderful process
groups or clusters. You can even organize them hierarchically —but don’t do that when
dealing with an individual end-to-end process.

To be effective with BPMN, it is important to understand that subprocesses are a purely
technical construct. They cannot be assigned any content-related degree of complexity.

140 4 Operational process models

You can define a sales subprocess as easily as one called tie shoelaces. Collapse both sub-
process within the same diagram —it’s all good.

While it is highly probable that more subprocesses are defined at the strategic level than
at the operational level in our framework, this isn’t obligatory. You can apply both these
levels of our framework to finely granular processes of any type. The framework merely
facilitates transition from a general, result-oriented process representation (organizational
implementation) to the actual technical implementation. Just like tasks, subprocesses can
help at every level.

4.5.3 Slice processes according to your domain boundaries

In section 1.6 on page 19 we have already introduced the trend towards microservices and
"bounded contexts". The resulting system boundaries must be taken into account in oper-
ational models.

In our example, the job advertisement could be a microservice. The publication of the
job advertisement on different online platforms could be part of its responsibility, but per-
haps this is better done in a microservice on its own. After all, it can be highly complex to
communicate with different online marketplaces. This design is even advantageous if you
decide to replace this service with an existing cloud service in the future.

We can model the collaboration at a glance in BPMN, as shown in figure 4.22. The publi-
cation is now a separate technical flow, which is not only located in another microservice,
but could also be implemented by other means.

P
ub

lis
hi

ng
W

or
kf

lo
w

 E
ng

in
e

Publishing
successfulPublishing

requested

Jo
b

A
dv

er
tis

em
en

t
W

or
kf

lo
w

 e
ng

in
e

A
ut

om
at

ic
H

R
 c

le
rk

H
iri

ng

de
pa

rtm
en

t
m

an
ag

er

Write job
description

Check job
description

Correct job
description

No

Trigger
advertisement

Yes

Advertisement
publishing

Job advertised

OK?

Send
confirmation of

success

web site

MajorJobs.com

Blog

Publish
job ad on

company web
site

Publish job ad on
blog

Publish
job ad on

MajorJobs.com

Published

FIGURE 4.22 This collaboration model respects given system boundaries, like in microservice
architectures.

Sometimes such a collaboration model is helpful to understand the ping pong between mi-
croservices. We have also seen that the exact boundaries are only really discussed and de-
fined when dealing with such a model. Nevertheless, you don’t have to create such a model.
And if you do, you might want to throw it away after these workshops. The maintenance is

4.5 Hands-on tips for the operational level 141

too expensive and the responsibility for this work is not defined. The real implementation
projects relate to the individual microservices, meaning only one of the technical flows. If
you take care of the job advertisement, you will see the publication of the advertisement as
one of many services that you call via some API. It is a black box to you, and that’s exactly
how it should be.

In this way, an end-to-end business process is divided into smaller pieces that fit exactly
into the context of microservices. In this way a BPMN monolith can be avoided, which we
already warned against in section 1.6 on page 19.

Let’s be clear: Of course a monolithic process can also make sense, namely exactly when
you are designing a monolithic system. Although "monolith" is mostly seen negatively
today, it is often still valid and even the easiest way to build an application, especially if
exactly one development team can take care of the whole application.

4.5.4 The limits of formalization

BPMN is based on the assumption that we can define the course of a process as an unam-
biguous control flow. The more precisely we model the desired process in BPMN, the more
narrowly we define the range of people’s action within the process. A total application of
this paradigm would be, to put it bluntly, to turn any process into the equivalent of an in-
dustrial assembly line in which the work of people is planned down to the most minute
detail and which leaves no room for them to maneuver. This approach is not always pop-
ular. Various Internet forums discuss this topic in ideological terms, with people opposing
the paradigm on humanist grounds, standing up against the increased technocratization
of society.

We will not engage with that discussion in this book, but we will make one pragmatic point:
In many of the BPM projects in which we have been involved, we have had to leave white
spots in the process models. White spots are what we call sections in a process or subpro-
cesses that cannot be clarified unambiguously. There is a negative and a positive aspect to
this:

■ On the negative side, there is often uncertainty about exactly how the subprocess is or
should be carried out. The knowledge is just not (yet) available for various reasons. This
is something we are seeking to change.

■ On the positive side, the subprocess may be carried out perfectly well, but the knowl-
edge related to it resides in the heads of the people carrying out the subprocess —and is
therefore of an implicit nature —which we can accept.

In the first, negative, case of a white spot, we are left with the need to document an un-
desired intermediate state when modeling the process. In the second, positive, instance,
it is our place to document the desired final state. In either case, you have already seen a
BPMN design in section 2.8.4 on page 73 that can help us; the ad hoc subprocess as shown
in figure 4.23 on the following page.

Ad hoc subprocesses are a sort of carte blanche for the process analyst. They capture the
tasks that can be carried out in a non-binding fashion while they are being worked through.
How often this occurs, in what order, and whether they are executed at all is completely up
to the participant. An ad hoc subprocess also lets you draw a boundary around an area that

142 4 Operational process models

...

2 days before
traveling date

Turn off
heaters

Leave keys
with the

neighbors
Pack suitcases

Write out-of-
office email

~

Travel preparation

FIGURE 4.23 Preparing a trip can consist of these task, although it does not have to.

remains unclear while you continue to specify the remaining process around it. The ad hoc
subprocess is a tool we have often been grateful to have during our BPM projects.

Ad hoc subprocesses, however, can only rarely be executed in an engine. So check this with
the vendor of choice or consider alternative approaches to implement these unstructured
phases.

4.5.5 Flexibility in BPMN models

BPMN allows you to model a certain degree of flexibility for individual process instances.
In our practical projects, some samples have proven themselves, which we would like to
present here. Basically, this always revolves around the meaningful use of events.

Imagine a simple order fulfillment process for an industrial company that processes large
orders and does a lot of manual checks. For example, a customer check, including a sanc-
tions comparison, can take several days. During this time, the order may be changed again,
so it must be checked again. This can easily be modeled as shown in figure 4.24 with a non-
interrupting condition event.

FIGURE 4.24 This BPMN model uses a non-interrupting condition event to trigger a reorder
check only if necessary.

Now your customer might want to cancel his order, which you, as a customer-friendly com-
pany, naturally want to allow. However, customer friendliness has its limits, because if pro-
duction has already started, you would rather first ask what costs a cancellation will incur.
Figure 4.25 on the facing page shows a possible implementation in BPMN: If a cancellation

4.5 Hands-on tips for the operational level 143

request is received, an event sub-process is started. As you may remember from chapter
2.6.1, the dashed event is non-interrupting. This means we let the order run normally while
we clarify the cancellation in parallel. For example, we learn that what’s been produced so
far are things we can safely put in stock. Therefore, we confirm the cancellation and the
process runs into the error end event. This error starts an interrupting event subprocess,
meaning we cancel the order handling process.

FIGURE 4.25 This BPMN model can process a cancellation request at any time, but only
cancels the order process if the cancellation is confirmed.

By the way, a classic for flexibility is the status inquiry about orders. You can also model
this in the ordering process as shown in figure 4.26. Similarly, it is also possible to model
additional actions of the employee at any time, for example because he wants to initiate a
feasibility check or start customs clearance for complex deliveries. You may already know
this pattern from timer-controlled event sub-processes to start an escalation path.

FIGURE 4.26 Parallel paths like inquiries are easy to model.

As you can see, the BPMN provides you with tools to allow flexibility in process instances.
In our projects, these simple patterns have proven very successful and can already cover a
large part of the requirements. Of course this has limits and you should accept if a process

144 4 Operational process models

is too unstructured to be captured with BPMN at all. In this case, as already mentioned in
section 4.5.4, you can use the ad hoc subprocess.

4.5.6 Taking business decisions out of processes

In section 4.5.1 on page 136, we looked at the receiving order process, and discussed what
mistakes could occur while working through it. We ask a further question now: Under what
circumstances should a customer’s creditworthiness be examined? If we assume that this
question depends on certain facts about the customer and on the total order value, then
we define the first step in the process as being check order data. After that, we can decide if
a credit check is necessary. (See figure 4.27.)

Check delivery
date

Fax order
confirmation

O
rd

er
 p

ro
ce

ss
in

g

Check order
details Check credit

Order
confirmed

Order
received

yes

no

Credit to be
checked?

FIGURE 4.27 Receiving an order and examining the customer’s credit under certain
circumstances.

Now we have to deal with the specific conditions in which we carry out a customer credit
check. Let us assume the following:

■ Credit has to be checked if the order value exceeds 300,000 EUR.

■ If the customer is new to our company, credit must be checked if the order value exceeds
50,000 EUR.

■ If the customer is categorized as a Class A customer, there is no need for a credit check.

Check delivery
date

Fax order
confirmation

O
rd

er
 p

ro
ce

ss
in

g

Check order
details Check creditNew

customer

Class A
customer

Customer?

Order
value?

Order
value?

Other regular
customer

 50,000

 > 300,000

 otherwise

 otherwise

Order
received

FIGURE 4.28 Conditions which lead to checking a customer’s credit.

Of course we can model these conditions completely in the process diagram. We have
done so in figure 4.28. What do you think of this diagram? Can you imagine adding further
conditions that only apply to certain customers? Sure, but perhaps you’re also thinking of
the problems those extra conditions imply:

■ Every additional condition further inflates the diagram with more gateways and addi-
tional sequence flows.

■ This inflation problem becomes even more pronounced if the additional conditions are
interlinked (for example, both more customer types and more levels of order value).

4.5 Hands-on tips for the operational level 145

■ The process diagram quickly becomes excessively confusing.

■ If conditions change —new ones are added or old ones are removed —the diagram has to
be adapted accordingly. That will be a time-consuming mess while rearranging symbols
and sequence flows.

■ If the customer’s credit also has to be checked as part of other processes (within a non-
binding request, for example), the conditions will have to be modeled redundantly —and
then maintained.

This way of dealing with complex decisions is absolutely not best practice; rather, it is a
classic mistake in process modeling. To avoid it, we need to understand such conditions as
business decisions and to separate them from the routing decisions implemented by gate-
ways.

Dealing with business decisions is a discipline in its own right. As the name implies, it’s
about making (often complex) decisions. The conditions on which the decisions are based
determine which tasks we carry out and which tasks we omit. Being able to manage con-
ditions centrally, simply, and flexibly is absolutely vital to the success of process manage-
ment. For process modeling, we therefore have to find a way to separate business decisions
from routing decisions.

To do this, we should first select a suitable medium for modeling decisions. This is where
(you guessed it) the DMN standard comes in. We detail DMN in section 5 on page 149, so
we’ll only discuss one element here: the decision table.

A decision table for the question of whether the customer’s credit should be checked could
look like the one in figure 4.29.

Decision
Customer type Order value Check credit?
Class A customer Irrelevant NO

> $ 300,000 YES
≤ $ 300,000 NO

New customer ≥ $ 50,000 YES
< $ 50,000 NO

Other regular customer

Conditions

FIGURE 4.29 Decision table for the question of checking credit.

How can we now link the decision table with the process model? To do so, we can use the
business rule task as shown in figure 4.30 on the next page:

■ We introduce a business rule task Apply set of rules in front of the XOR gateway. We do so
only so we can apply the modeled decision table.

■ The result of the business rule task is the decision to check or not to check credit.

■ The XOR gateway refers only to this decision, and it leads to the corresponding process
flow.

■ The link to the decision table is carried out directly in the task and at the attribute level.

The link displayed between the business rule task and the decision table is not part of the
standard notation. It is something that has to be supported by your BPMN tool. At the
time the BPMN standard was created, no DMN standard yet existed, so OMG deliberately
left open the question of the link. It is becoming apparent, however, that software vendors

146 4 Operational process models

Check delivery
date

Fax order
confirmation

O
rd

er
 p

ro
ce

ss
in

g

Check order
details Check credityes

no

Credit to be
checked?

Apply set of
rules

Set of rules
“Credit to

check“

Order
received

FIGURE 4.30 Receiving an order with reference to the decision table.

offering combined solutions for BPMN and DMN see the business rule task as the preferred
way of referencing DMN models from BPMN models.

Let’s take a moment to contemplate the difference between the two decision types:

■ Routing decisions are carried out by XOR gateways, OR gateways, or conditional se-
quence flows. They are simple in principle and represent exactly as many possible condi-
tions as there are outgoing flows. The process model therefore stores routing conditions
directly.

■ Business decisions can be extremely complex, and they are routinely managed outside
of the process model. A modeled decision, however, can serve to determine relevant
conditions for routing. For example, the business decision to check credit is based on
the type of customer and the order amount. It has to check a total of five combinations
of conditions. It can only generate two possible results: Yes or No. These are precisely
the two possibilities to which the corresponding routing decision in the XOR gateway of
the process model refers.

Theoretically, the condition event can be linked to business decisions. Unfortunately, the
BPMN specification has little to say about this. From a technical point of view, it can be
interpreted as a decision engine constantly checking if a condition stored with the event is
taking place. Then, if it takes place, the decision engine reports it to the workflow engine,
and the workflow engine evaluates the event as having occurred. The workflow engine
either launches or continues the process accordingly (see figure 4.31 on the facing page).

For business-IT alignment, it is important that you understand the basic principle behind
this structure because it is in no way limited to technical implementations! We have the
same problem when we think of the purely organizational implementation of the process.
In our company, we have to abide by certain rules —legal requirements or safety regula-
tions, for instance. Someone has to be alert to situations to which the rules may apply.
If they occur, something has to be done —a process has to be launched. Conversely, the
process may be launched or continued only once a pre-defined condition has occurred.

From our point of view, the systematic management of decisions, the so-called Business
Decision Management (BDM), is an elementary building block of Business Process Man-
agement (BPM). In BPM, we ask ourselves the most fundamental questions, such as "What

4.5 Hands-on tips for the operational level 147

Workflow engine

Decision engine

Check Inform workflow
engineYes

Every X
seconds No

Condition
xy met?

Condition xy
occurred

FIGURE 4.31 Condition event and decision engine.

does our company need to do to succeed?" The answer may be many different things, but
surely one of those things is to make the best possible decisions as effectively as possible.

5 DMN - Introduction
and overview

5.1 Understanding DMN
DMN is short for Decision Model and Notation. Like BPMN, the DMN standard is managed
by OMG. Unlike BPMN, DMN is not about activities or processes. It does, however, work
along the same lines: Decisions can be modeled by the business user, and the modeled
decisions can be implemented in a decision engine. Just as with BPMN, the DMN standard
specification contains both a verbal description of the notation as well as an XML-based,
formal metamodel. We refer to DMN version 1.2, the version current as we wrote this book.
This version also introduced a way to store graphical layout information within the XML
file.

A decision according to the DMN definition means deriving a result (output) from given
facts (input) on the basis of a defined decision logic.

The topic of modeling and automating decisions is not new. When it was known as Business
Rules Management and Rule Engine, it never took off. We think this was because the tools
were both proprietary and fairly bulky. These hindrances are being lifted by a new genera-
tion of tools as well as the agreement on the DMN standard. This is providing new impetus
toward systematic decision-management or Business Decision Management (BDM). We ex-
pect DMN and the corresponding decision engines to spread rapidly.

BDM can be broadly applied. Sometimes, compliance rules make careful analysis and doc-
umentation of the decision-making process necessary. More often, however, the main fo-
cus of the work is about automating operational decisions using a decision engine. We’ll
take a closer look at that in section 6.2.1 on page 171.

DMN deliberately focuses on operational decisions and not strategic ones. It is about the
many routine decisions that need to be made repeatedly every day. The big issues, such as
if your company should introduce BPMN or DMN, are unique and often do not follow set
rules; that’s why modeling them is not worthwhile.

Typical examples of operational decisions are:

■ Feasibility check or authorization, such as if a customer qualifies for a certain product or
if a claim can be regulated automatically.

■ Validation, to check, for instance, if an application or a notification of a claim is complete
and its content is valid.

150 5 DMN - Introduction and overview

■ Fraud detection, for example, if a credit-card payment or notification of claim is suspi-
cious.

■ Risk assessment, as in if a credit limit is exceeded or an invoice amount can be autho-
rized.

■ Calculation. Examples include estimating shipping charges and determining discounts.

■ Assigning. Think of skills-based routing.

■ Maximization, to evaluate the business value of an assignment, for instance, to deter-
mine the correct priority or most appropriate customer classification.

■ Addressing target groups, an example of which is determining products or advertising
banners that may be of interest for a certain user.

In this book, we use the following terms in keeping with the DMN specification. Decisions
depend on decision logic, which is defined by a number of rules, and these often are listed in
a decision table. The rows in a decision table as well as conditions —we will detail Friendly
Enough Expression Language (FEEL) expressions later —are therefore rules, and a decision
table is a set of rules.

Decision requirements

Decision logic

Expression language
(FEEL)Decison table

if GuestCount in
[5..10]
then
Meal =
GuestCount *
PastaBasicReceipt

Meal

Beverages

Season Guest
count

Children
present?

FIGURE 5.1 Elements of the DMN standard.

Figure 5.1 gives an overview of the content of the DMN specification. In this book, we
offer an introduction to DMN, but we focus on those elements that, from our point of view,
are most relevant to its practical application. We believe this will be sufficient to get you
started.

5.2 Notation elements 151

5.2 Notation elements
5.2.1 Decision tables

Decision tables are the central element of the DMN specification. They are the means for
achieving business-IT alignment. They are fairly intuitive: The left-hand columns contain
the conditions and the input values (input), and the right-hand columns contain the results
(output). Each row corresponds to a single rule. When the condition on the left-hand side
is met, then the result on the right-hand side is passed back.

Decision tables should always remain readable for the business. Technical terms, such as
mapping against certain types of data, are hidden in the background. Conditions can be
expressed in the FEEL expression language.

Hint: Business-IT-alignment

Decision tables have the great advantage of being easily understood by most business
users, yet suitable decision engines can execute the tables directly. Business-IT align-
ment in this area is therefore fairly easy to achieve. Make the most of it!

Let’s look at an example. Assume that you want to make an extremely important decision:
what meal you’re going to cook. The selected meal is therefore the desired result. What are
the inputs? Well, that could depend on the time of year, and it could lead to a decision table
such as in figure 5.2. (Yes, eating asparagus all spring could get tedious, but we’re only just
getting started with DMN.)

U Season Meal

1 "Spring" "Asparagus"
2 "Summer" "Salad"
3 "Fall" "Steak"
4 "Winter" "Goulash"

Meal

FIGURE 5.2 A simple decision table.

Even if you’re willing to accept a monotonous meal plan, it’s simply not possible to enter-
tain guests with six months of meat dishes, particularly as some of them may be vegetarian.
We’ll add another input column to our decision table. Multiple columns are always linked
by AND, so all conditions have to be met; although if you leave a cell empty, that condition
will not be taken into account. So in the example in figure 5.3 on the following page, there
will always be asparagus in spring. Hooray!

Look more closely at the table. Two new rules provide pasta as a result. The only difference
between these rules is the season. This works well, but we can compact it by using a comma
separator. The comma expresses OR within a cell. The table in figure 5.4 on the next page
therefore has the same content but is easier to grasp.

We have limited ourselves to equality (=) in our comparisons so far. Other arithmetic com-
parison operations can also be used, and we can use them explicitly in the table. Let’s

152 5 DMN - Introduction and overview

U Season Vegetarian guests? Meal

1 "Spring" - "Asparagus"
2 "Summer" - "Salad"
3 "Fall" false "Steak"
4 "Winter" false "Goulash"
5 "Fall" true "Pasta"
6 "Winter" true "Pasta"

Meal

FIGURE 5.3 Decision tables can contain multiple input columns. The conditions are linked by
AND.

U Season Vegetarian guests? Meal

1 "Spring" - "Asparagus"
2 "Summer" - "Salad"
3 "Fall" false "Steak"
4 "Winter" false "Goulash"
5 "Fall", "Winter" true "Pasta"

Meal

FIGURE 5.4 Within a single cell, different conditions can be separated by a comma. The
conditions are thus linked by OR.

assume you would like to offer dry-aged steak, but you can only afford it for a limited num-
ber of guests. Figure 5.5 shows the corresponding decision table. Dry-aged steak is only
served for a maximum of three guests, while larger groups get less-expensive steak.

U Season Vegetarian guests? Number of guests Meal

1 "Spring" - - "Asparagus"
2 "Summer" - - "Salad"
3 "Fall" false < 4 "Dry-aged gourmet steak"
3 "Fall" false >= 4 "Steak"
4 "Winter" false - "Goulash"
5 "Fall", "Winter" true - "Pasta"

Meal

FIGURE 5.5 Comparisons are not limited to equality.

There is a further way of making the table easier to read. DMN makes it possible to link
cells, and all cells that are linked have the same condition, so figure 5.6 on the next page
presents a tidier version. The difference may seem slight here, but in larger tables it can
make quite a contribution to readability.

Do you want to define appropriate side dishes? It’s simple to do because DMN allows as
many result columns as desired. Figure 5.7 on the facing page displays the decision table.

You’ve probably spent the last few examples wondering why we constantly write true and
false in the table instead of yes or no, or why we put seasons and meals in quotes. It is

5.2 Notation elements 153

U Season Vegetarian guests? Number of guests Meal
1 "Spring" - - "Asparagus"
2 "Summer" - - "Salad"
3 < 4 "Dry-aged gourmet steak"
3 >= 4 "Steak"
4 "Winter" false - "Goulash"
5 "Fall", "Winter" true - "Pasta"

Meal

"Fall" false

FIGURE 5.6 Cells can be linked for better readability.

U Season Vegetarian guests? Meal Side dish

1 "Spring" - "Asparagus" "Potatoes"
2 "Summer" - "Salad" "Bread"
3 "Fall" false "Steak" "Fried potatoes"
4 "Winter" false "Goulash" "Rice"
5 "Fall", "Winter" true "Pasta" "Salad"

Meal

FIGURE 5.7 Several result columns are possible.

to accommodate the FEEL expression language; it always has to be possible to translate a
decision table into a valid FEEL. Let’s take a closer look at this.

Tooling

As DMN decision tables can potentially be executed, they therefore have to be translated
into correct FEEL, so tables need to contain valid expressions. Tools can help a lot with
this by offering views that, for instance, hide certain FEEL characteristics in the interests
of business-IT alignment. So it may serve you to find a tool that will display yes and no
while still storing true and false in the background.

5.2.2 Expressions in decision tables

We use FEEL to express conditions in tables. To be more precise, tables are translated into
FEEL in the background as exemplified in figure 5.8 on the next page. The following ele-
ments of the decision table exist:

■ The input expression is defined in the column header. During automation, at the latest,
variables are referenced here or complex expressions (calculations) are used. You can
hide the technical expressions so that the column header remains technically readable.

■ An input entry is an individual cell. Usually, you enter concrete values (literals) there.
According to the standard, you cannot use calculations or function calls in cells, though
manufacturer extensions may make it possible.

■ The output expression is the column header of a result. Typically, this is the name of the
result variable.

154 5 DMN - Introduction and overview

Meal
Input Expression

Party.Season

= "Summer"

= "Salad"

Input Expression

Input ExpressionInput Entry

Input ExpressionOutput Entry

Output Expression

If
 Party.Season = "Summer"
Then
 Meal = "Salad"

Output Expression

FEEL Expression

FIGURE 5.8 Decision tables are translated into FEEL expressions.

■ An output entry is a result cell. It usually contains a specific value (literal), but in princi-
ple, it also can be an expression. Calculations or function calls are therefore allowed.

It may be best next to look at some more examples, and to focus on common construc-
tions within decision tables. Further details on FEEL (which by the way can also be applied
outside of decision tables), will follow in section 5.2.4 on page 159.

In the previous section, we got familiar with simple comparisons, but what happens if you
want to cook a spinach dish for exactly 6, 7, or 8 guests? You could use the comma (6, 7, 8),
although that would be annoying when dealing with larger value ranges. This is why FEEL
recognizes ranges, which makes the table in figure 5.9 possible.

U Season Number of guests Meal

1 <= 4 "Green asparagus"
2 5 "White asparagus"
3 [6..8] "Spinach"
4 >= 9 "Pasta"
5 not("Spring") - "Lasagne"

Meal

"Spring"

FIGURE 5.9 Using [..] to express ranges.

We’ve actually hidden a bit more FEEL here. The NOT function negates a condition, mean-
ing that we only eat lasagna when it’s not spring.

We said that the comma acts as an OR link; it can be used with as many conditions as you
wish. A superstitious mathematician could even eat green asparagus only with a prime
number of guests during spring, as shown in figure 5.10 on the facing page.

5.2 Notation elements 155

U Season Number of guests Meal

1 "Spring" <= 3, 5, 7, 13, 17 "Green asparagus"
2 "Spring" 4, 6, [8..12], [14..16], >17 "White asparagus"
5 not("Spring") - "Lasagne"

Meal

FIGURE 5.10 Complex OR links between conditions are possible with commas.

You should pay particular attention to the possibilities provided by logical links. There are
limits on what can be expressed in a decision table —and to be honest, we’ve encountered
them all. For instance, you may not link conditions in one cell by AND. Instead, you would
have to split conditions across columns. Figure 5.11 shows how the range [6..8] would have
to be split. It also shows a further example of the NOT function.

U Season Number of guests Number of guests Meal

1 <= 4 - "Green asparagus"
2 5 - "White asparagus"
3 >=6 <=8 "Spinach"
4 >= 9 - "Pasta"
5 not("Spring", "Summer) - - "Lasagne"

Meal

"Spring", "Summer"

FIGURE 5.11 An AND link between two conditions is only possible by using two columns.

If you want to carve out exclusions, they need to appear within brackets. In other words,
you cannot write:

not("spring"), not("summer")

Because it is always either not spring or not summer.

Finally, we want to mention that FEEL also recognizes other types of data such as time,
date, and duration. This means that you can easily express the fact that you want fondue
on New Year’s Eve. This is shown in figure 5.12.

U Season Date Meal

1 - date("2016-12-31") "Fondue"
2 "Spring" - "Asparagus"
3 "Summer" - "Salad"
4 "Fall" - "Steak"
5 "Winter" not(date("2016-12-31")) "Goulash"

Meal

FIGURE 5.12 Thanks to the date data type, we can count on fondue on New Year’s Eve!

As you can see, we need to check the rule for winter to exempt New Year’s Eve. This has to
do with the hit policy. We are currently using the unique hit policy, which is indicated by

156 5 DMN - Introduction and overview

the U in the header of the left-most column of the table. Exactly one rule (that is, one row)
of the table has to correspond. We cannot eat fondue and goulash; it simply isn’t allowed.
That may seem unfair, but it is clearly what the table expresses. Let’s take a closer look.

5.2.3 Hit policy

The hit policy determines how many rules may apply and what happens if several rules
apply at once. The first letter of the hit policy appears as the header of the left-most column
of the table. All our examples so far show U for the hit policy unique.

Unique (U): Unique hit
The unique hit policy means that exactly one rule (in other words, one row of the table)
will apply. This hit policy is standard, and it is the default if no hit policy is specified. You
could leave out the U, but we recommend including the hit policy designation to avoid
misunderstandings.

Typical applications for the unique hit policy are:

■ Determining discounts

■ Determining the employee responsible for a task

As we saw in figure 5.12 on the previous page, unique is not always the best hit policy to
rely on to arrive at a clear table of rules.

First (F): The first hit
The hit policy first (F) makes the example table much clearer, as shown in figure 5.13. Only
the first matching row determines the result, all other rows are irrelevant, and the order
goes from top to bottom. Now we can write very simple rules to ensure that our exceptions
are dealt with higher up, and we can define standard outcomes lower down. Having fondue
on New Year’s Eve is a clear exception, and if it doesn’t apply, then there is no need to ensure
that it is not New Year’s Eve, although it may still be winter.

F Season Date Meal

1 - date("2016-12-31") "Fondue"
2 "Spring" - "Asparagus"
3 "Summer" - "Salad"
4 "Fall" - "Steak"
5 "Winter" - "Goulash"

Meal

FIGURE 5.13 The first matching row determines the result when using the first hit policy.

One consequence of the first hit policy is that the order of the rows must be taken into
account while maintaining rules. Large sets of rules make this more difficult, and of course,
the author must know what the F means.

Typical applications for the first hit policy are:

5.2 Notation elements 157

■ Determining credit worthiness. By putting them at or near the top, clear rules can be
established for black sheep or existing customers. Rules for new customers can then be
evaluated using a more comprehensive table.

■ Assessing risk or detecting fraud. It is possible that various risks may apply, although it
is often sufficient to determine the first risk.

Priority (P): The most important hit policy
Another variety is the priority (P) hit policy. In DMN, priority is defined by the result
columns. We can now tell you something we left out earlier: In columns, you can enu-
merate the applicable values. These values then apply in the precise order in which they
are enumerated. The priority in figure 5.14 is therefore:

1. Exception

2. Normal

Relevance

Exception, Normal
2 "Spring" - Normal "Asparagus"
3 "Summer" - Normal "Salad"
4 "Fall" - Normal "Steak"
1 - date("2016-12-31") Exception "Fondue"
5 "Winter" - Normal "Goulash"

Meal

Season Date MealP

FIGURE 5.14 The results column can define a priority that determines the result.

To determine the priority of a rule, we look first at the left-most results column (not the left-
most column in the table). All applicable rules with result values in this column are then
sorted by priority, and the result with the highest priority becomes the one selected. In our
example, it is essential for the relevance column to be the first results column, and that the
entries in the cells are empty. If several results with the highest priority exist, then the next
results column to the right becomes determinative among them.

One advantage of the priority hit policy is that the order of rows makes no difference. That
may mean easier maintenance, but it also may mean greater difficulty in recognizing when
one rule trumps another or how conflicts are resolved.

Typical applications for the priority hit policy are:

■ Assessing risk when different levels of risk exist, and we’re only interested in the highest
level detected.

Collect (C): All hits
Up until now, only one row (or rule) has determined our result. That doesn’t necessarily
have to be the case. Let’s assume that you want to decide what drinks to serve at your
dinner party as well. You’ll offer beer, wine, soft drinks, and water.

We need the collect (C) hit policy. This policy collects the results of all matching rows. The
result of the decision is therefore a list of results.

158 5 DMN - Introduction and overview

C Meal Children present? Drink

1 "Asparagus" - "White wine"
2 not("Asparagus") - "Beer"
3 - true "Soft drinks"
4 - - "Water"

Drinks

FIGURE 5.15 A list of appropriate drinks is the result of a decision table that applies the collect
hit policy.

Figure 5.15 shows a decision table for various combinations of drinks. If we decide on
asparagus, then white wine is offered. If children are present, we’ll offer soft drinks. And no
matter what food we serve, there will always be water.

Typical applications for the collect hit policy are:

■ Assessing risk where all risks must be collected

■ Detecting fraud or validating where all anomalies must be collected

Collect with aggregation: The sum of the hits
Suppose your party is to be a costume party, and you want to assess the guests’ outfits. Of
course, this too can be handled by a decision table. Basically, it is like your bank assessing
your credit rating using a scoring model. We attribute a certain number of points to various
factors; the sum of points determines a score for each costume.

This situation may lead to a decision table like the one in figure 5.16. Note that we can pun-
ish factors by attributing negative points for a boring costume, for instance. By applying
this decision table to each guest in costume, we can receive a corresponding assessment,
and DMN will even tally the score results. How did that become possible? Notice the small
C+ in the header of the left-most column of the table.

C+ Manufacturing method Make-up Creativity factor Realistic? Score

1 "Self-sewn" - - - 20

2 "Made out of other costumes"
- - -

10

3 "Bought" - - - 0
4 - "None" - - -10
5 - "A little" - - 10
6 - "Serious" - - 20
7 - - "Boring" - -20
8 - - "Very creative" - 20
9 - - - true 5

10 - - - false 0

Costume scoring

FIGURE 5.16 The aggregation function calculates a total score as a result in the decision table.

DMN recognizes aggregation functions in connection with the collect hit policy. The aggre-
gation functions available are:

5.2 Notation elements 159

■ C+: Adds the values.

■ C<: Applies the smallest value.

■ C>: Applies the largest value.

■ C#: Counts the hits.

Of course, you could take a different approach and decide that the factor with the highest
number of points is determinative. In that case, you simply enter C>, since you are now
interested in the maximum.

A typical application for the collect hit policy is:

■ Scoring.

Hit policies - an overview
We have described the hit policies we consider relevant. For the sake of completeness,
however, here is a list all the hit policies made possible by the standard. First, the single hit
policies, which allow for exactly one unambiguous result:

■ Unique: Exactly one row has to match.

■ First: The first row that matches determines the result.

■ Any: As many rows as desired may match, all of which then have to provide the same
result.

■ Priority: The row with the highest priority matches.

Second, these multiple hit policies allow several results to be passed back:

■ Collect: The result is a list of all results without a defined order. Optionally, one of the
following aggregate functions can be added: + (total), < (minimum), > (maximum), #
(count). The use of aggregate functions of course means that only one result is passed
back, so strictly speaking, the Collect hit policy behaves more as a single-hit policy.

■ Rule order: A list of results in the same order as the table rows.

■ Output order: A list of results in order of priority.

Most situations can be addressed by using a combination of different hit policies, as we
saw with the meal-planning example. In that case, the hit policy will have an effect on the
readability and maintainability of the table. It is often worth trying different varieties until
you have a feel for what will work best. We also recommend real-world testing as early as
possible. In practice, we often use simulator for testing decision tables. We provide a free
simulator online at https://camunda.org/dmn/simulator/.

5.2.4 Advanced FEEL

We have mentioned FEEL several times. This is the Friendly Enough Expression Language,
and we have applied it in decision tables. When standardizing FEEL, the aim was to achieve
an expression language understandable to business users but also formally precise so that
it can be executed directly by engines. If you were to say that that goal is simply not pos-
sible, then we would disagree. Consider Excel. We have seen clients using Excel formulas
written by business users that would severely test people with IT degrees. In any event,

160 5 DMN - Introduction and overview

though, most of the formulas needed are easy enough for most users to read and under-
stand.

Besides decision tables, FEEL can be used in simple decision logic without tables. This may
seem a bit confusing at first, but there are indeed some decisions in which it makes little
sense to invest effort in a table. If you recall assessing the fancy costumes in our earlier
example, a sensible rule would have been: The costume with the highest number of points
wins. Should there be equal points, then a final result is decided alphabetically by surname.
You could now describe this as a FEEL expression.

One step at a time, however. Let’s start with a simple FEEL expression you already know
from figure 5.8 on page 154.

if
Party.Season = "Summer"

then
Meal = "Salad"

This is a rule that can be applied. It doesn’t have to be expressed in a decision table (al-
though a table still may be a better choice in terms of business-IT alignment).

We’ll go deeper into the nature of FEEL in the rest of the chapter. If the examples given so
far have been sufficient for you to make your decision tables, you can skip the following
details. But if you are defining rules to be executed or just want to understand certain
expressions better, you will find these details helpful.

Types of data
You can provide specific values as literals in FEEL. The following data types are permitted:

■ Text (string): Surround with quotes. Example: "Summer"

■ Numbers (number): Write without quotes. Example: 42

■ Yes/no (Boolean): Write true or false

■ Time and date (time, date): Write as functions using the patterns HH:MM:SS and YYYY-
MM-DD. Example: date("1980-01-01")

■ Duration (in days, months, or years): Example: "P1DT2H" for 1 day and 2 hours

Besides specific values, you can reference variables to be provided by an engine at the mo-
ment of execution. Write the names of variables without quotes. Be careful! The following
two lines, for instance, do not express the same thing:

Season = "Summer"
Season = Summer

The first expression compares the text string Summer as a literal. The second expression
compares the value of a variable named Summer. So you have to pay close attention to the
type of data.

By the way, complex objects can be used as variables, so the party itself could be an object
with several attributes:

5.2 Notation elements 161

Party.Season = "Summer"
Party.NumberOfGuests > 17

Values for dates always have to be generated by the date function, otherwise they will not
be treated as a date but instead as text. If you wanted to verify that the party is only taking
place after BPMCon 2016, you would write:

Party.Date > date("2016-09-16")

The DMN specification allows text strings to be displayed in italics instead of in quotes, and
for date values likewise to be displayed in bold and italics. This helps with the display, but
correct values still have to be generated in the background. Since these details can easily
be overlooked, we are not great fans of these alternative representations.

Operators
The most important operators are:

■ Comparisons: =, !=, >, >=, <, <=.

■ Ranges: [1..10],]0..11[, (0..11). All of these ranges mean 1 to 10, inclusive, because][
or () do not include the limit values, whereas [] does. We recommend using only one
construction per project if possible. So far, [1..10] has proven to be the best solution, at
least for whole numbers.

■ Negation: not().

■ Calculations: You can use basic arithmetic operators to carry out mathematical calcula-
tions.

The following examples show a few operators in action. For these, we use the logical AND
operator, which is only available in FEEL and not in S-FEEL:

if
Party.Date = date("2016-09-16") and
Party.NumberOfGuests in [25..100] and
Party.CoolnessFactor > 5 and
not(Party.FocusZeroCode)

then
Recommendation = "Party at same time as BPMCon! But not enough

participants. Ignore."

if
Party.NumberOfGuests + Party.NumberOfPrebookings > 500

then
Recommendation = "Find new venue"

162 5 DMN - Introduction and overview

5.2.5 Decision requirements

Some decisions cannot be expressed in a simple table. Often, one decision depends on
another one. These situations can be modeled using the decision requirements graph (DRG)
and visualized as a decision requirements diagram (DRD).

At your dinner party, you want to decide which drinks to serve. This of course depends on
the meal. After all, you would like to serve a good white wine to accompany the delicious
asparagus, right?

Meal

Drinks

Season Number
of guests

Children
present?

Decision

Input

The output of this decision
is input for the next decision

FIGURE 5.17 The decision requirements diagram (DRD) displays decisions, input values, and
relationships between decisions.

The DRD in figure 5.17 shows the decisions that need to be taken, what the necessary in-
puts are, and how decisions relate to one another. This is how you use the result of the meal
decision as an input value for a drinks decision.

DRD is a good tool for discussing decision structures, so you might do a workshop with
your spouse. During the workshop, he or she points out that some guests will prefer non-
alcoholic beverages. On the basis of the DRD, you may decide to outsource this decision
to avoid over-complicating the drink decision table. You change the DRD as shown in fig-
ure 5.18 on the facing page.

This has a further advantage: In the future, you will be able to introduce additional reasons
for not serving alcohol without having to modify the drink decision. Furthermore, the logic
is re-usable. That will be an advantage if you need make sure your desserts are alcohol-free
as well.

A decision node in a DRD is linked to decision logic. This means that FEEL or a decision
table can be linked in the background. When discussing DRDs in a working session, by the
way, it can be extremely helpful to set up example decision tables, as they make a situation
a lot easier to grasp. Figure 5.19 on the next page shows an example of this. It is probably
exactly what you and your spouse drew on the kitchen whiteboard while planning the party.

Not all inputs contained in the table necessarily have to be represented graphically. On
the contrary, in practice, it sometimes may be desirable to select your own granularity. You
may wish to see only the party as an object in the DRD, but to use the table to go into details
such as the date or the number of guests.

5.3 Practical tips 163

Meal

Drinks

Season Number
of guests

Children
present?

Non-alcoholic

Dry alcoholics
present?

FIGURE 5.18 This DRD has outsourced the decision on whether or not alcohol is okay.

Meal Drinks

Season Guest
count

Children
present?

Non-alcoholic

Dry alcoholics
present?

FIGURE 5.19 Decision nodes in a DRD are linked to decision logic —usually decision tables.

DMN makes it possible to diagram a complex decision requirement graph (DRG) through
various diagrams (DRD). This means that each diagram may show only fragments to ex-
plain a particular situation. This is comparable to BPMN, in which you can, in theory, also
draw several business process diagrams for a single collaboration. This is rare in practice
—and we haven’t yet actually experienced it with DMN. For the sake of simplicity, you can
usually assume that a DRG equals a DRD.

5.3 Practical tips

5.3.1 Linking BPMN and DMN

For processes, decisions need to be made regularly. In section 4.5.6 on page 144, we ex-
plained when and why these decisions should not be modeled with gateways in process

164 5 DMN - Introduction and overview

models. Instead, BPMN offers its own type of task to link sets of rules: the business rule
task. (At the time BPMN was being standardized, we spoke of business rules management
instead of decision management as we do today.)

The approach is simple: As soon as a BPMN process arrives in the Business Rule Task, the
set of rules is evaluated. Then the result of the decision is present in the process, and it can
be evaluated, for instance, by a gateway. In section 6.2.6 on page 175 we look more closely
at the technical integration of workflows and decision engines; they are often integrated
into one engine. The specific link to DMN has not yet been standardized because BPMN is
significantly older than DMN, although this reality is cushioned by vendor extensions.

Figure 5.20 recalls an example from earlier in the book. During a risk assessment, the DMN
set of rules applies, and the result triggers a routing decision in the process. You may wish
to review section 4.5.6 on page 144 and think again about the difference between business
decisions and routing decisions.

FIGURE 5.20 Logic for business decisions in DMN can be called from BPMN processes. The
result is often used for routing decisions in the process.

5.3.2 Decisions with a decision flow

Let’s assume you want to decide on a place and date for your party. That shouldn’t be too
difficult. Back in the workshop with your spouse, you sketch the diagram in figure 5.21 on
the facing page on the kitchen whiteboard.

This seem straightforward enough, but it doesn’t quite work out once you start working on
a decision table.

5.3 Practical tips 165

Appointment

Location

School
holidays

Competing
parties

Weather

International
soccer match

Day of
week

FIGURE 5.21 A simple decision?

■ You really can’t generate a decision table to evaluate all possible dates. First, you would
determine all relevant days, let’s say Saturdays in May or June. Second, you evaluate
those dates to find the most appropriate one.

■ You want to decide on a date, the one with the highest evaluation. This decision is not
suitable for a table, but it can be rendered as a simple expression.

■ With the date in hand, you can decide on a venue. You’ll need more information first,
such as the weather forecast.

As you can see, the decision is complicated, and it requires that a certain order be main-
tained at certain stages. The DMN standard is entirely mute on this topic, but in practice it
has proved useful to model a decision flow in such cases. Naturally, we use BPMN.

Figure 5.22 shows the decision flow for our party. As you can see, we first collected all dates
of interest. We did it here as a script task but it could also have been a service task. The
business rule task is then carried out once for each date, and it scores them. With a score
for each date, it’s easy to determine the most suitable one. Then, for this date only, we have
to pull up a weather report —and that can truly be a service call. Now we can decide on the
venue.

Decision required

Determine
location

Determine
appointment

score
Decision made

Choose
appointment

Determine all
Saturdays in
the desired

month

Get weather
report

For all identified
appointments

Appointment with
highest score

Only for the chosen
appointment

FIGURE 5.22 The decision flow provides order for complex decisions.

To have a full set of rules for our decision, we have to implement the two necessary decision
tables. See the examples in figure 5.23 on the following page.

This example shows a typical pattern when trying to pick out something from a large num-
ber of values. We call it the decision funnel. Typically, it consists of the steps depicted in
figure 5.24 on the next page:

166 5 DMN - Introduction and overview

C+
School

holidays?

Distance from
competing party (in

km)

International
soccer match?

Score

1 true - - -5
2 - <20 - -50
3 - [20..50] - -20
4 - - true -10

Appointment score

U Season Weather Venue

1 "Winter", "Fall" - "Hire restaurant"
2 "Rain" "Dining room"
3 "Changeable" "Balcony"
4 "Sun" "Garden"

Location

"Spring", "Summer"

FIGURE 5.23 Decision tables to be used in the decision flow.

Entity
Entity
Entity

Entity
Entity Entity

Chosen
entity

Filter
(hard criteria)

Score
(soft criteria)

Select
e.g. best

scorea. Programmed, SQL, … b. DMN

Criteria

Decision
about search

criteria

1 2 3 4

FIGURE 5.24 To select a value, you often go through the decision funnel.

1. You decide on certain search criteria such as all Saturdays in May and June. In this
case, it is an informal decision reached by gut feeling. This also could be modeled by
DMN, however, by assessing the correct months and possible weekdays according to
the requirements of the party.

2. From a large volume of data, you seek the elements that match your criteria. For perfor-
mance reasons, this is typically not done with DMN but with programmed services or
SQL queries to a database.

3. You may filter the results again with DMN to apply rules that exclude certain results.
(Our example does not show this.)

4. You evaluate all elements in the current list, usually with a DMN scoring table.

5. You select exactly one element, usually the one with the highest score, although this
doesn’t always have to be the case. In tenders, for instance, sometimes the second-
cheapest option is selected.

Decision flows are a powerful tool and we enjoy using them. A word of warning, however:
Even if the decision flow is also modeled in BPMN, it should remain strictly separated from
the actual business processes. Always create a separate BPMN model for a decision flow,
which is then called up in one node of the business process —just as with a decision table.
Otherwise you will end up mixing the process flow with business decisions and, as we’ve
already said, we do not believe that to be a good idea.

5.3 Practical tips 167

Technically, a decision flow can be automated using a normal workflow engine as can any
other BPMN process.

5.3.3 The life cycle of decisions

When we started working with DMN, a decision life cycle emerged. It is similar to Ca-
munda’s BPM life cycle from figure 1.1.3 on page 2. Again, we tried to compromise be-
tween overly-correct complexity and simplified presentation. You see our compromise in
figure 5.25.

Decision
Discovery

Decision
Analysis

Decision
Deployment

Decision
Operation

Decision
Design

Rule Authoring

Decision
Validation

Live Editing

Decision
Validation

Rule Authoring

Workshops,
Interviews,
Proces Models,
Documentation, ...

DRD Modeling,
Domain Model & IT Systems,
Sample Rules

Test Case Execution,
Simulation, ...

Change Management,
Software Development, ...

Decision Tables,
Test Case Authoring

DRD Modeling,
Decision Table Structure,
Test Case Structure

Leverage rapid prototyping
& fast iterations

Small rule changes
without full development
& deployment cycle

FIGURE 5.25 The life cycle of decisions.

The life cycle assumes that you need to implement one decision. For this decision, you
should collect as much information as possible during a first discovery. Using that infor-
mation, you can start your analysis. During the analysis, DRDs like the ones introduced in
section 5.2.5 on page 162 are useful tools. You also should start drafting tables early so that
you can render the rules as specifically as possible for all concerned.

Once you finish this preliminary work, you can verify if all necessary input data is truly
available —and where it came from. We often find that during this early phase wishful
thinking collides with reality. You realize that desired rules cannot be implemented be-
cause necessary information is either missing or painfully difficult to obtain. It is good to
catch these problems early, however, as you can still take countermeasures. Perhaps you
can change the rules, for instance, or make the additional effort to acquire the required
information. Costs and benefits are easy to see at this point.

168 5 DMN - Introduction and overview

Once agreement has been reached about the early phases, you can begin to design. First,
create the structure (the columns) of the decision table. Provide some sample rules (a few
rows). This work may be done by specialists or the IT department if the table is to be auto-
mated later on. Second, record the rules fully. The business may do this part, or it should at
least review the table and take over ownership. They should not delegate this responsibility.

If the project is headed toward an automated outcome, define test cases during design.
This is always important later when it is time to validate the set of rules. Also ensure that the
test cases are recorded in a form understandable to the business that will be maintaining
them. Common worksheets in Microsoft Excel have proved useful for this, but there are
specialized test frameworks available as well.

Rules should be validated once they are complete. For the simplest cases, it can be enough
just to run the table through a free online simulator such as https://camunda.org/dmn/simulator/.
You also can simulate decisions using historic data. In the best-case scenario, you may have
access to automated tests based on test cases previously defined.

The deployment of a decision varies with the type of decision. It can range from compre-
hensive change-management procedures and software releases to simple working instruc-
tions by email.

Once the decisions are in production, the desire is often expressed to live edit them. Re-
member this rule of thumb: It is comparatively easy to adapt the rows in a table, but it is
less easy to change columns —in other words, the structure.

Decision engines offer the possibility of changing the tables by a push of a button during
runtime. In production. Immediately. This sounds great, and it usually makes clients’ eyes
light up . . . but after that flash of enthusiasm, the eyes narrow with skepticism. It doesn’t
take long for someone to ask: "But who’s going to push this button? What actually happens
if something goes wrong? Does the change then really go live immediately? That’s a bit
scary, isn’t it?"

Those are exactly the right questions. Unfortunately, there are no universal answers. The
best thing to do is to think about your organization and your plans. One thing remains true:
The are no technical hurdles to having a rule change go live in real time without involving
IT.

6 Workflow
Automation

6.1 Purpose and benefit
This chapter is about automating business processes and decisions with software. Of
course, this can be done using traditional software development, but it is much more
interesting —especially in the context of business-IT alignment —to use an engine. We
introduce this possibility in this chapter, and we detail the advantages it offers.

Since engines can operate with both standards presented in this book (BPMN and DMN),
we use engine as an umbrella term for:

■ Workflow engines. These carry out structured processes in BPMN. They are also known
as process engines.

■ Decision engines, which make decisions on the basis of DMN. These are also known as
rule engines or business rule engines.

Products exist that integrate both standards.

A engine reads models as XML files, and it executes the models directly. The models, act-
ing as source code of a software solution, must be precisely defined and detailed. That’s
important. After all, the engine cannot interpret things that aren’t defined. That models
equate to source code also is a huge opportunity; the models always represent reality! To
make a change, you adapt the model.

With process models in BPMN, we have the freedom that only the automated parts end
up in an engine. This brings us to a second important aspect of our framework, which we
explain more in section 6.3 on page 176: If human and technological process flows are sen-
sibly connected, you stand a good chance of keeping the documented work organization
up to date. Suitable tools can project technical modifications into the human flows and,
in the context of process monitoring, show what has been executed by the engine in ways
easy for non-technical users to understand.

170 6 Workflow Automation

6.2 Basics

6.2.1 Model execution with workflow and decision engines

The engine is a software component for executing BPMN or DMN models.

Workflow engine
For workflow or process automation, the workflow engine needs the business process to be
in a BPMN model that contains all technical details required for execution. While running,
process instances are generated for each process run. The workflow engine calculates the
control flow and always knows what has to be done next. This actualizes the token concept
introduced in section 2.1.4 on page 26. To be precise, it is not the business process that is
automated but rather the control over that process.

An engine recognizes two fundamentally different types of activities: those that require
human interaction and all others that run automatically. The latter may be service calls, but
they also may be evaluations of gateways, events, or sentries. For human interaction, user
or human tasks are used. Usually, engines contain a list of tasks comparable to an email
inbox in that they let the user know which tasks still have to be completed. If you open a
task, you get a preconfigured screen mask that makes it possible to view and process data
or make decisions. See the overview of how the workflow engine functions in figure 6.1.

Task
assignment

Automated
service call

Automated
service call

Task
assignment

Workflow engine

Process participant IT system IT system Process participant

Measure
running time

Automatic
decision

Executable
process model Modeling

Monitoring and
reporting

Service orchestration

Human workflow
management

FIGURE 6.1 How the workflow engine works.

As you can see, the engine has to do more than simply manage the control flow because
it is necessary to also account for the data flow in the process. This means that during
one process instance, data can be added which the engine then manages together with the
state. Usually, this data is also stored in a database so that it can be restored after a system
failure.

6.2 Basics 171

Decision engine
Making decisions based on a DMN model has somewhat different requirements. A decision
engine is software that can make decisions automatically based on business rules. No state
needs to be maintained. The primary aim is to distinguish business logic from program or
process logic, which means you can make fundamental changes to business rules without
having to change program code or redesign the business process.

Decision model (rules)

Facts (Data)

WENN
 kunde: Kunde.Typ = Neukunde
 UND
 Bestellung.Höhe >= 50.000 €
DANN
 kunde.bonitätPrüfen

 Order
 Value = 35.750
 Content = ...

 Customer
 Type = new
 Name = Camunda
 ...

Decision engine

Service consumer / client

Request Result

FIGURE 6.2 An overview of the decision engine.

You can picture the decision engine as a black box (see figure 6.2). The engine responds
to a request according to the rules it knows. To evaluate the rules, the engine uses data
—so called facts. Typically, the facts are contained within the request. They may also be
provided from an external source such as a database.

Advantages of engines
Besides managing the control and data flow, a typical workflow or decision engine provides
many additional functions:

■ Versioning of models: Business processes are long-running by nature. An order process,
for instance, may take from a few days to several months. This means that when you
modify a process, some instances still may be running. Engines can process different
versions of a model simultaneously, thus making a transition to a new process possible
by phasing out the old version.

■ Data collection, key performance indicators, and reports: The engine can collect data
automatically while managing processes or decision instances. For an order, for in-
stance, it can collect when authorization has been occurred, when shipping has been
initiated or completed, and so on. This data can be aggregated and reported on, provid-
ing a good overview of efficiency and potential bottlenecks within the process. Once it

172 6 Workflow Automation

has been well aggregated, it also provides an overview of the process landscape. A fur-
ther possibility is business activity monitoring (BAM), an approach meant to recognize
patterns in real time and issue warnings or to intervene autonomously.

■ Technical monitoring and administration: The engine offers the chance to view current
status of the process instances. This opens various possibilities for intervention such as
aborting or restarting a faulty instance.

6.2.2 Executing the BPMN and DMN standards

Models in BPMN and DMN can be stored as XML files. Each standard defines a precise
XML schema. The information relevant for execution is stored in XML, as are the coor-
dinates and other details for graphical representation called diagram interchange. This
makes it possible to use models in different tools without losing the layout. The configura-
tions needed for the graphical layout and for execution are stored in the same XML file.

Both standards also define execution semantics, which means that for each notation ele-
ment, there is a precise definition for how the engine should act. Precise definition makes
it possible for models to be carried out in any standards-compatible engine without pro-
prietary extensions. In section 6.4.3 on page 183, we outline everything that needs to be
taken into account in this context.

In this book, we do not delve into the complete execution semantics nor the details on the
XML schema. We deliberately avoid XML source code —and we even removed some code
that was in earlier editions —because it should to be transparent to you as a user. Of course,
you are welcome to pore over further examples at http://camunda.org, for instance, or in
the official example documents.

6.2.3 Alternative automation languages

Web Services Business Process Execution Language (WS-BPEL) is an XML-based language
that combines web services into more powerful services. Services are combined as pro-
cesses; this is called orchestration. WS-BPEL was introduced in 2002 by major IT compa-
nies including IBM and Microsoft.

The acceptance and use of BPEL peaked around 2010. After BPMN 2.0 was released, BPEL
started to decline, although some experts still maintain that it provides some functions
that are missing in BPMN. Either way, from what we are seeing, it is obvious that few BPEL
projects are left, and only a few workflow engines still support it.

We don’t think it makes much sense for you to occupy yourself with BPEL now. We do,
however, offer respect to the authors of the standard; it was an important milestone on the
road to BPMN 2.0.

For those interested in the history, here is why we think BPMN prevailed over BPEL:

■ Control flow as graph: In contrast to BPELs’ block structure, BPMN processes are graph-
oriented. Functionally modeled processes can thus be executed without problems. This
challenged the vendors of workflow engines, but they found practical solutions even for
complicated gateway designs. Those solutions may not satisfy theorists in certain eso-
teric special cases, but for practitioners, they represent a useful compromise.

6.2 Basics 173

■ No close binding to web services and XML: BPMN, in contrast to BPEL, deliberately
leaves open the question of applying Web Services and XML in a workflow engine. These
technologies may be the defaults, but we have seen that it is often better to use other
technologies. If a project focuses entirely on a Java architecture, for instance, it makes
sense to apply a Java workflow engine to avoid the lengthy trip through web services. So
far, this has required proprietary tools, but BPMN 2.0 enables such engines to be inte-
grated through the standard as well.

■ Graphical notation: Most BPEL tools provide a graphical view of a process, but this is
not standardized. Also, the resulting block-oriented diagrams are dissimilar to the func-
tional model. In contrast, BPMN processes have a well-defined appearance that is en-
tirely aligned with the concepts and ideas of the functional models. This is a big step
toward aligning business and IT.

We published a summary evaluation on the future of BPEL at http://BPEL.de.

Besides the BPMN and BPEL standards, there is also the XML Process Definition Language
(XPDL) from the Workflow Management Coalition. Like BPEL, XPDL is no longer relevant.
There are, obviously, manufacturers and related service providers who claim otherwise.
There are also many language-proprietary workflow engines with a wide variety of archi-
tectural approaches. We can’t provide an overview of products with proprietary languages.
We note, however, that these are increasingly adapting to BPMN as they issue new releases.

6.2.4 When is it worth using a workflow engine?

Why should you even use a workflow engine in your projects? Can’t you just implement the
process diagrams you’ve generated in your preferred programming language?

Surely, this question is justified. As is so often the case, however, the answer is: It depends.
Let’s step back and look at automation in its entirety. The rule of thumb is that process
automation is worth it especially for business processes that exhibit the following:

■ High number of repetitions: The work put into automation is worthwhile only if many
instances can be executed. Otherwise, the cost of development may exceed the savings
in process costs.

■ Standardization: If processes are barely structured, and they run differently all the time,
then an engine is not appropriate. The majority of instances therefore should follow the
same pattern.

■ Rich in information: Basically, processes that carry a lot of information are better suited
to automation because computers handle information very well. If physical objects have
to be moved often, automation is more difficult and less exciting.

■ High potential degree of automation: Of course, task automation can increase the effi-
ciency of a process. Some tasks, such as booking in an ERP system, are well suited to au-
tomating with an engine. The data no longer has to be entered manually into the mask.
Some manual tasks are not suitable for automation —calling up clients, for instance.

Would you like to automate your business processes? Let’s return to the question of why
you should use an engine:

■ Visibility: A main advantage of using an engine is that the process is not only available
as source code (XML, Java, and so on), but also as a diagram. This means that the exe-

174 6 Workflow Automation

cution of the process is not buried deep in the software; it is rendered visible. This ad-
vantage is essential because it makes it easy to discover how the process is implemented.
Truth, as we know, lies in the source code, and suddenly it becomes accessible and un-
derstandable for everyone. What an advantage when it comes to discussing weak points,
possible improvements, and modifications! Without the engine, IT specialists have to
embark on a quasi-archaeological search to unearth how the process was actually im-
plemented. Process automation provides the transparency necessary to make sensible
re-engineering possible. Being able to ensure that an automated process is truly being
carried out as described —and being able to prove it with log data afterward —is also
immensely helpful for meeting compliance requirements.

■ Agility: Often, BPM and SOA are compared to Lego. You simply construct your new pro-
cess from existing services as if the services were Lego building blocks. A customer once
said to us: "Take a look at Lego kits nowadays. You get highly complex and specialized
building blocks that you cannot easily reuse at other points." And he’s right —that’s ex-
actly what happens in IT today. If we want to obtain a complex end product such as a cool
Lego spaceship, then we can’t work with simple building blocks. This also means that we
can’t just place the blocks wherever we choose. Does that mean no agility? We don’t think
so, because we think the agility comes from increased transparency that makes changing
processes feasible in the first place. It doesn’t work at the push of a button, but at least
we can estimate what consequences a process change will have and where we’ll have to
intervene. The visibility of the process also leads to services of suitable granularity, and
it supports the sensible modularization of IT systems.

■ Quality: Imagine a mail-order firm of your choosing. If you call them to find out where
your order is, there are two possible answers: "Let me find out for you; please wait a
minute," or the immediate: "Your order is currently waiting at xy." A mail-order firm
that can offer the second answer probably uses an engine that offers a more precise look
at the process definitions and process instances. Escalations in the case of excessive
waiting times don’t have to come from frustrated customers but rather from the engine
itself.

In theory, you can achieve these advantages by building your own engine. Perhaps you
could also build your own database, but would you? Probably not. Instead you would trust
reliable products. If they were available free of charge, so much the better!

6.2.5 When is it worth using a decision engine?

When it comes to decisions and their underlying rules, there are two basic possibilities for
execution:

■ Programming as source code

■ Decision engine

Even today, it is common to program decisions in a classic programming language. As an
approach, this has some disadvantages that need to be weighed:

■ Translation: Rules always have to be translated from the specification into program code
by a software developer. This is true both for the initial development and for subsequent
modifications. Even developers regularly fail to find the implemented decision logic in

6.2 Basics 175

the source code that was generated, making subsequent modifications laborious and
prone to mistakes.

■ Release cycles: Because they are programmed into software, decisions are subject to the
same release cycles as other software components. Comprehensive test and approval
cycles can take a long time, and that can be a problem when business rules change fre-
quently. That is why there is a call for a more agile approach in this area in particular.

■ Readability: Rules hidden in program code cannot be understood by the business de-
partments. This makes validation difficult. Determining the implemented business rules
from looking at evolved systems is extremely difficult and furthermore, the logic often is
spread across the entire system.

■ Traceability: If a decision is made, it is desirable to record why, for example, a credit
check was not necessary —be it for legal reasons, internal traceability, or even to be able
to show this information directly to the customer. This means that the customer even
could be given the names of the rules that resulted in his or her declined application.
Emulating this in source code is extremely cumbersome.

According to our assessment, the tools of the past that were a great obstacle to the univer-
sal spread of rule engines. Platforms known as business rule management systems (BRMS)
were typically expensive, proprietary, and bulky. With DMN, however, a new generation of
engines and tools have entered the market, and this will lead to an expansion of decision
engines and DMN. Already, there are some open-source projects in this area. Gone are the
days when decision (or rule) engines were outmoded or too expensive. The integration of
modern decision engines has become easy, and it explains their increased popularity.

To sum up, we point out that from a business-IT alignment perspective, decision engines
represent low hanging fruit that you should not overlook.

6.2.6 Workflow and decision engines in interaction

If you want to use a workflow engine and a decision engine together, you should decide first
if you want to use an integrated product or two separate engines. From an architectural
point of view, we recommend keeping the two concepts clearly separated, but that does not
mean you can’t use an integrated product.

The decision engine intervenes in the process intermittently. It is explicitly called to do so,
as shown in figure 6.3 on the next page. A big advantage of this is that you can provide
decisions as a service that components outside of the process can also use. Our credit
check, for instance, will surely be used at other points in the process. Ideally, from the point
of view of the process, it shouldn’t matter if a decision engine or a conventionally developed
software component is working behind the scenes as long as the result is correct.

Our modeling etiquette

Rules for a decision should be written independently of their current use in the process.
Try to imagine a second use case in a different process or even in a different context.
If you can apply the rule in the second situation without having to modify it, you end up
with better rules —and ones that may be reusable even outside of the current process.

176 6 Workflow Automation

Check

W
or

kf
lo

w
 e

ng
in

e
D

ec
is

io
n

en
gi

ne
Do this

Evaluate
decision

Do that

Additional
data

Rules

Input data Result

FIGURE 6.3 The decision engine interacting with the workflow engine.

By the way, the technical connection plays a more subordinate role here, and it mainly
depends on the technology of the workflow engine. BPMN defines three connection pos-
sibilities for the business rule task: business rule web service, generic web service, or other
technologies. Of course, manufacturers prefer to offer the decision engines within their
own portfolios, but we know from experience that it is usually okay to use other engines
and to connect them through web services , REST, or Java. From a design point of view, the
use of other engines doesn’t really matter. Direct integration into a product, however, often
has an advantage when it comes to monitoring.

6.3 Automating technical process flows

6.3.1 Model requirements

Technical process flows must be syntactically and semantically correct, but they must also
contain all the technical details necessary for automation with the workflow engine. The
model must be precisely built, leave no room for interpretation, and all cases of technical
error or exceptions have to be dealt with. After all, this is the source code for a software
solution!

This is also the main difference between the framework described in this book and previous
approaches. The precise modeling, however, also poses a huge challenge for the process
analyst. Many tool vendors have tried to hide this complexity in their own technical mod-
els, and those models have never worked. From experience, we know that an operational
process model with human and technical flows can make business-IT alignment possible

6.3 Automating technical process flows 177

Process overview
Fast comprehension
Logically abstract

Operational processes
Coordinate details between
human process flow and technical
process flow (automation)
Physically specific

Content:
Goal:

Semantics:

Content:
Goal:

Semantics:

FIGURE 6.4 Technical process flows in the Camunda house.

while meeting the same kinds of requirements you would expect of software —provided
that the necessary tooling exists. (We go into this again in section 7.4.2 on page 204.)

6.3.2 Procedure

The success of a technical flow when implemented depends on the procedure for devel-
oping the flow. This is where business collides with IT. In our experience, prospects for
success depend not only on the process analyst’s skill, but also on his or her collaboration
and communication with the process engineer.

Development typically has these steps:

1. Clarify the target-state process at the organizational level. These are the human flows
we discussed in section 4 on page 117.

2. Decide on the technology, language, and the workflow engine.

3. If you apply a BPMN engine (see section 6.2.2 on page 172), all you need to do is refine
the definition of the technical flows. If you use another technology, you need to map the
technical flows to the language of that technology.

4. Iteratively refine and specify the operational process model as new questions arise.

5. Test and execute the process with established methods of software development.

We have only examined the workflow aspect of process control so far. For technical imple-
mentation, it is essential to reconcile other aspects of software technology. (See figure 4.14
on page 130 especially.) In the next section, we examine some technical aspects still miss-
ing from the operational process model such as:

■ Specifying data in the desired technology such as XML or Java.

■ Defining service calls in the desired technology, for example, web services.

■ Detailing human tasks such as assigning users to groups or determining the forms to
display.

178 6 Workflow Automation

6.3.3 The executable process model

Starting with the previously defined process model, we use it as input for the technical flow
(see figure 4.13 on page 129), but we only consider the workflow engine’s pool. Figure 6.5
represents this process. Before, we did not show that the job advertisement was executed
on different platforms. Instead, we extracted it as subprocesses. For simplicity, we now
embed it.

To illustrate this, we also show MajorJobs.com as a separate pool, mainly to show the mes-
sage flow. We will specify the exact content of the message later.

So far, the process doesn’t look all that technical, does it? Many of the details necessary for
automation are hidden in the underlying model, and that’s available as an XML file. For
now, we want to examine several aspects step-by-step. We do not cover the whole process
here to save space, but you can see the full example at http://www.bpm-guide.de/bpm-
java/.

From a merely visual point of view, the technical flow in this example corresponds to the
technical flow defined in the last chapter. Isn’t that brilliant? For those concerned with
details, note that we changed two more things:

■ We added the job advertisement data object because we have to store certain data in
running process instances.

■ We changed send confirmation of success from a send task to a script task. Why? While the
confirmation could be sent by different means, it will probably be by email, and the email
could come through an automated service or some built-in capability of the workflow
engine. In our example, we assumed the latter, and this leads to the use of a script task
in the process.

The displayed process still doesn’t look too technical, does it? The crux of the matter is that
the many details necessary for automation are hidden under the hood. As we said, they are
buried in the underlying model, which exists as an XML file. In particular, these are:

■ Specifying data in the desired technology such as XML or Java

■ Executing the gateway with expression language

W
or

kf
lo

w
 e

ng
in

e

A
ut

om
at

ic
H

R
 c

le
rk

H
iri

ng
 d

ep
t.

M
an

ag
er

Write job
description

Check job
description

Correct job
description

No

Trigger
advertisement

Yes

Job advertised

OK?

Send
confirmation of

success
web site

MajorJobs.com

Blog

Selected
channels Publish

job ad on
company web

site

Publish job ad on
blog

Publish
job ad on

MajorJobs.com

Job
advertisement

MajorJobs.com

FIGURE 6.5 Executable process model of the job advertisement.

6.3 Automating technical process flows 179

■ Defining the service calls in the desired technology such as REST, Java, or web services

■ Human task details such as assignment to user groups or forms to be displayed

Let’s take a closer look.

Data modeling and expressions
In the process diagram, the job advertisement is represented as a data object. BPMN re-
frains from implementing detailed technical data modeling. Instead, it provides expan-
sion points to accommodate diverse technologies. The default setting for this is the XML
schema, although we could use Java or .NET data types just as well. By the way, data in the
process does not necessarily have to be visualized in the graphical model.

The specification also recognizes formal languages for representing conditions, which are
called expressions. The formal language therefore is called expression language.

Expressions can glean new information from existing data and, in the easiest case, a simple
true-or-false assessment takes place. A good application example is the data-based exclu-
sive gateway: depending on the process, at the time of execution, the token will leave the
gateway through a given sequence flow.

In BPMN, the standard setting is to use the XPath expression language. XPath is a query
language that works directly on XML data and therefore makes sense in combination with
the XML schema for data types. This language also can be exchanged. In connection with
Java data type, for instance, Java Unified Expression Language (JUEL) could be used.

This ability to configure a data type and the expression language to match it offers great
flexibility. It also means that vendors can develop lightweight engines that are close to
programming languages. This is what we have done with Camunda BPM. On the other
hand, it should be noted that proprietary developments like this can lead to processes that
can’t run on different engines. We come back to this topic in section 6.4.3 on page 183.

Service calls
You can call IT systems from a BPMN process. You can use various elements:

■ Service task: Synchronous communication, during which you obtain a response straight
away, is represented by a service task. The BPMN process remains in the service task
until it receives the response.

■ Send and receive task: In the case of asynchronous communication, the send task sends
a message or calls a service, acknowledging receipt of the request. The actual response
takes place asynchronously and is then modeled by a receive task or a corresponding
event.

In both cases, we use logic to extend the task to call the service. If the call is a SOAP web ser-
vice, the call can be carried out in a completely standardized fashion. To do so, we have to
define data objects and messages as well as incoming and outgoing data mappings. BPMN,
however, is not firmly tied to SOAP, meaning that other technologies such as Java or REST-
based services can be connected directly.

In section 7.4.3 on page 204 we go into our own platform, Camunda BPM, which we have
used extensively in practice. This takes a different approach to service calls in that it pro-
vides extensions so that you can link a service task directly to Java code or corresponding

180 6 Workflow Automation

expressions. While this is a deliberate deviation from the standard, we are not violating
it because the standard permits extensions. Overall, we find that the extensions make it
much easier for Java developers to deal with process definition. Success depends on the
individual customer’s situation. Most of our clients seem to think it is a worthwhile trade-
off.

User tasks
Human interaction takes place in the form of a user task. The existence of user tasks in the
process leads to tasks being placed in task management and tasks ending up on a user’s
task list. Only after the user completes the task does the process continue.

The exact technological connection is often a detail in the implementation of the partic-
ular workflow engine, making seamless integration possible. If it is essential for you to
be independent of a specific engine, there is generally a standardized way using web ser-
vices: WS-HumanTask (WS-HT). This comprehensive specification defines user tasks in a
detailed and powerful way. Aspects such as responsibilities, delegation, escalation, or even
meta information for the display can be defined. In real life, however, WS-HT is often too
complex to be used easily.

Forms for tasks or other interface components, by the way, are completely left out by
BPMN. This is where workflow engine vendors go off in different directions.

6.4 Practical tips

6.4.1 Embedded and decentralized workflow engines

If you want to run your BPMN models on a workflow engine, the question immediately
arises: how to run this engine? In the past, the image of the central workflow engine or BPM
suite dominated. Various operational processes were operated on this central platform.
The main advantage was that the platform only had to be operated once, so that fewer
people had to be familiar with it and perhaps licensing costs could be saved.

However, this view does not fit into modern architectures around microservices. In sec-
tion 1.6 on page 19 and section 4.5.3 on page 140, we talked about BPMN monoliths and
showed that an operative business process also has to consider system boundaries.

This also runs through the technical infrastructure, because one wants to grant the individ-
ual microservice teams as much autonomy as possible. A microservice is actually defined
only by its responsibility and the API. The use of a workflow engine and the selection of
the concrete product is an implementation detail that should be left to the team itself. Of
course, autonomy in practice usually has its limits, since companies want to avoid a pro-
liferation of technologies and often form competence centers for key technologies such as
workflow engines.

But nevertheless the workflow engine is logically part of a microservice as shown in figure
6.6. It is not a central infrastructure or a microservice in itself. This view becomes possible
because lightweight workflow engines today, unlike complex BPM suites in the past, can be

6.4 Practical tips 181

Microservice Insurance Application

Microservice Policy

UI,
business logic,
entities,
data,
…Workflow Engine

UI,
business logic,
entities,
data,
…Workflow Engine

API

FIGURE 6.6 In microservice architectures, the workflow engine is usually an implementation
detail and not a central infrastructure.

operated very easily. In this book we don’t want to go further into these details and instead
refer to relevant tutorials and how-tos on the Internet, for example about our open source
platform Camunda BPM.

This view is essential in microservice architectures. We often find that BPMN tools are re-
jected by architects or developers because they automatically think of centralized or mono-
lithic BPM systems. And in the world of microservices, which is characterized by decen-
tralization and autonomy, such a tool has no place! So it is all the more important for us to
spread the knowledge that a workflow engine can also be used decentrally in a microser-
vice. Then it quickly becomes an essential building block in harmony with your microser-
vices architecture.

6.4.2 The low-code trap

Once people get familiar with the idea of a workflow engine, we often run into a problem:
the expectation that the magical BPM suite will solve everything. Ideally, we feed the suite

182 6 Workflow Automation

on models developed by the business before IT systems are automatically integrated and
human workflow management just works magically. Finally, we create a dashboard of key
performance indicators. These enable the business to recognize process problems in real
time and to resolve problems for themselves.

This scenario sounds too good to be true, and in practice, it is. Developing process appli-
cations is always a form of software development. The promise that this can be taken on by
business users in the future is appealing, but it is a promise that cannot be kept. We have
seen this over and over. At the end of the day, you need comprehensive wizards and forms
to develop process applications in a model-driven way, and the wizards and forms are so
complex that they overwhelm the average business user.

What happens then? The company’s own IT department is called in to take over develop-
ment. Unfortunately, the first thing the company’s software engineers have to do is figure
out the BPM suite. After all, they can’t just apply their prior knowledge of programming lan-
guages because the technology has been hidden behind the wizards and forms. Ironically,
the aim of making development faster and easier is completely thwarted.

During our many years of BPM project experience, we have come to realize that this is ex-
actly where the core problem with the classic BPM suite lies. It is especially pronounced
in companies that already have been carrying out software development —in Java, for in-
stance. The following disadvantages arise:

■ High programming effort: Because software development is vendor specific, in-house
developers need to learn and practice the vendor’s specific platform. The related expense
is not a one-off but instead continuous, with retraining required to maintain knowledge.
Existing knowledge (in Java, for example) cannot be applied. In addition, existing tools,
techniques, and best practices of software development (unit testing, for example) can
be applied partially or not at all. This severely limits the developers’ productivity, and as
a result, technical implementation is much more complex than it at first appears.

■ Inability to model distinctive parts of a process: Because the development approach
is model-driven, the possibilities for technical implementation are limited. Compare
this to a painter: On a blank canvas, an artist can paint a picture exactly the way she
imagines. Another artist paints by numbers. He can create stunning images, but only by
daubing predetermined colors onto predetermined places. This second artist can create
only what was predesigned.

Painting by numbers in BPM suites is like using off-the-shelf application software. Often
it is sufficiently flexible for standard support processes (vacation requests, for example,
or invoicing), but the limited possibilities for technical implementation remain insuffi-
cient for capturing and implementing core business processes.

■ Inability to integrate into existing IT: On an operational level, the drawbacks of off-
the-shelf applications also apply to traditional BPM suites: they cannot be incorporated
easily into existing IT structures.

■ Specialized developers needed: As we mentioned, a model-driven development ap-
proach is inevitably vendor specific, so there’s no escaping the fact that you will need
developers trained in a particular BPM suite. Such developers are scarce, and if they are
not available, it is much easier to find developers for popular programming languages
such as Java.

6.4 Practical tips 183

■ Vendor lock-in: Consequently, there is a strong vendor dependency as the vendor and
its partners are usually the only ones with developers with the required level of exper-
tise. This is acceptable in the context of support processes (invoicing, vacation requests,
and so on), but it represents unacceptable risk when capturing and implementing core
business processes.

To us, it seems that traditional BPM suites are . . . stuck in the middle . . . neither fish nor fowl.
They are as unsuitable, compared to existing software development, as off-the-shelf appli-
cation products, and they don’t even offer an out-of-the-box solution for process automa-
tion. This dilemma has resulted from an unsuccessful search for compromise between the
two extremes and also, to a large extent, to a more academic flow during the last decade:
model-driven software development. The modest growth of BPM suite vendors during the
same decade seems to confirm our assessment.

Does this mean that using BPM software for process automation is a bad idea? Of course
not, but it does mean that the right approach is not as simple as we might wish. In prac-
tice, it is a hybrid approach that proves best, where certain parts —the process itself —are
model-driven while other parts —complex user interfaces for instance —are developed
through classic programming. You therefore have to accept that software development will
require software developers in the future. Sounds fairly logical, doesn’t it?

In section 7.4.3 on page 204, we present the Camunda BPM platform as an example that
supports the hybrid approach and is available as an open source project.

6.4.3 The myth of engine interchangeability

We have indicated that some aspects may be solved differently in different products. The
flexibility of the standards gives vendors latitude in selecting technology. Can a process
model then be executable on different engines? Usually not. That is, we have not yet seen
a model that covers real requirements and was able to do it completely without vendor
extensions.

We think that BPMN engine interchangeability is of limited concern. Consider how much
time the SQL standard for databases has had to mature. Still, you often want to fall back on
features of a product that you know. We find that legitimate. Any requirement for swapping
around the workflow engine without having to touch your process solution should not be
given too much weight.

Most projects end up buying a clearly simplified process execution, such as using Java
shortcuts, while sacrificing interchangeability. This is further catalyzed by the fact that
Webservices are not exactly touted as the technology of the future, and many projects pre-
fer other technologies.

In short: Don’t make complete interchangeability a sticking point. Just trust that the nota-
tion, meaning the BPMN model structures agreed upon with the business (without execu-
tion attributes), can survive a switch in engines.

184 6 Workflow Automation

6.4.4 Modeling or programming

Okay, so you’re going to use a BPMN engine. The next questions are which aspects will be
expressed through technical process models, and which requirements may it be better to
continue addressing with classical software development? As is so often the case, there is
no generally applicable answer to this question. Even if some of the following factors sound
trivial to you, our experience shows that you will do well not to overlook:

■ Technology and architecture: Depending on the workflow engine and the overall archi-
tecture to be used, it can be either simple or difficult to execute certain requirements
within a process. Some engines, for example, make it possible directly to integrate Java
code, connectors, or script language. Others restrict the possibilities to web services.

■ Existing infrastructure: Few projects start from scratch. Existing systems and services
should be reused or integrated. Processes can be triggered using an existing scheduler,
for example, and not the workflow engine itself. These peripheral conditions need to be
taken into account.

■ Roles within the project: It is important to account for existing roles and know-how
within the project. Often, there are developers involved who can implement certain
functionalities quickly with classical programming but who will need a long time to do
so with the workflow engine. On the other hand, there are also projects involving trained
process engineers, and they work better with process models than with programming
languages.

We often see that once a workflow engine has been procured, there is impetus to use it
come hell or high water, and process models quickly follow that are so detailed that you
can’t see the forest for all the trees. These models do not help when communicating with
the business, and they are no easier to maintain than classical programming code. Besides,
the IT department will hate the more detailed models, and that’s no good to anyone. Suc-
cess is all about finding the right granularity. Modeled processes are a piece of the puzzle,
but they are only one piece.

W
or

kf
lo

w
 e

ng
in

e

Order
delivery

Customer

Status
inquiry

Internal post-
processing

Status
requested

Order
received

Order
delivered

Order
delivered

Order
fullfilled

FIGURE 6.7 A bad example of modeling. It models too many aspects of the process.

Figure 6.7 shows an example of going too far. The model shows a customer status inquiry
explicitly. At the moment, it doesn’t matter if we’re modeling this process with a signal

6.4 Practical tips 185

W
or

kf
lo

w
 e

ng
in

e

Customer

Internal post-
processing

Order
received

Order
delivery

W
or

kf
lo

w

en
gi

ne
or

so
ftw

ar
e

se
rv

ic
e Status request

of workflow
engine

Order
fullfilled

FIGURE 6.8 The model improved by removing status inquiry from the process.

event (as shown), or with a condition event, or perhaps even with a terminating end event;
you can see how complicated the process becomes. It probably isn’t such a good idea to
integrate the inquiry into the actual order process. It would be better to model it in its
own process or to use a simple service to query the state of the workflow engine’s instance.
The only requirement on the engine is that the status must be retrievable. Now look at the
modeling in figure 6.8. Whether the inquiry is carried out as a process or as a simple service
depends on the architecture.

Hint: Business-IT-alignment

Business-IT alignment doesn’t mean that software can no longer be developed conven-
tionally. It does mean introducing the workflow engine and graphical views of technical
processes as additional tools. But beware of process models that are too finely granu-
lar! Use diagrams in a way that enables business users to understand the technically
executable models.

6.4.5 Overcoming technical challenges

In automation projects based around BPMN and DMN, there are some patterns and pitfalls
that we would call typical. They depend on the technical environments and the tools used.
Vendors address many problems with their features and extensions, so it is hardly worth
going into too much detail in this book. Instead, let us give you some examples that will
support your understanding of the kinds of problems you may encounter.

Data in the process
An exciting discussion always takes place in a project: How much data do we want to store
in the process? Surely we’ll need all order data for an order process, won’t we? Our recom-
mendation would be the opposite: Store as little as possible —but as much as necessary. It
is usually a good idea to store order data in the preceding system for orders. Then, for the
process itself, just reference the order number. If the process needs more information to

186 6 Workflow Automation

support a decision at a gateway, for example, it can load the order data using a service call.
This has advantages:

■ The data is always up-to-date and there is no risk of divergence.

■ You do not need to store data redundantly in the process where it may persist in different
versions —meaning multiple times.

Exceptions confirm the rule, however, and our experience shows that there are times to
keep data in the process:

■ The preceding system is too slow. Constant loading leads to a performance issue. In this
case, you could use a cache, or you could abuse the engine as a cache.

■ You want to keep a copy of the data as it existed at a particular moment in the process
and to use it for the duration of the process run.

■ Your BPM platform does not make it possible to load data in the background. If this
means you have to model a service task over and over just to load the order, your model
quickly will become unreadable. As we said, it’s about finding the right balance between
graphical modeling and programming behind the scene.

■ You only store data needed for controlling the process flow, for example, decisions in
user tasks not available from other systems.

■ Often it may be desirable to store messages in an as transmitted form. This can make it
easier to repeat service calls or to identify errors.

Being ready-to-receive to receive events
From an automation point of view, intermediate events deserve a closer look. First, con-
sider the semantics of the ready-to-receive state we mentioned in section 2.6 on page 43.
Remember that, strictly speaking, incoming events are lost if no process instance is ready

Send invoice

S
al

es

Route planning system

Delivery
requested

Delivery
sent

Send invoice

S
al

es

Route planning system

Delivery
requested

Delivery
sent

Some engines can buffer the
message until the token arrives here

FIGURE 6.9 Never miss a message, even if the process is not ready to receive. A feature of the
workflow engine or explicit modeling?

6.4 Practical tips 187

to receive them. Looking at the example in the upper part of figure 6.9 on the facing page,
a delivery order is sent to route planning, then the invoice goes out. If send invoice is a hu-
man task, it may take some time. The delivery sent message may come in before the invoice
is ready, but we don’t want to lose the message.

In technical modeling, pragmatism usually gains the upper hand —and modeling that is
completely correct can seem unclear. In principle, workflow engines can solve the issue of
an out-of-sequence message by buffering the message. This is an extension of the BPMN
standard. If you have this functionality at your disposal, we recommend that you make
your approach visible in the model with an annotation.

By the way, buffering a message in an engine usually raises an immediate question: What
happens if a process never pulls the event out of the queue? The message sender can’t be
informed. This means that sophisticated error handling needs to recognize when a process
instance terminates the correlated event. As you can already tell, this is no mean feat.

You may have no choice but to restructure the model. You can wait for the event in parallel.
As figure 6.9 on the preceding page shows in the lower part, a working alternative is not
difficult. This restructuring shouldn’t cause a problem for IT, should it? At the very least,
the diagram has become more complicated, and that’s a problem in terms of business-
IT alignment. Even this modeling does not always have to be consistent because in some
technical environments the answer may arrive before the process moves toward the receive
event. Here, again, the devil is in the details.

Testing processes
Testing processes and decisions is crucial. Executable models equate to source code, after
all. They need testing in the same way and, as is now common in software development,
the tests should be automated. Automated testing has the great advantage of being repeat-
able at any time at no additional cost. If you change the process, you can repeat the testing
to confirm that you haven’t broken anything. Of course this approach means that when
you change the model sufficiently, you also have to adapt the test cases. It may seem at first
that testing comes at the price of agility, but our experience suggests that you have to take
a longer view. Agility is preserved over time because otherwise, at some point, no changes
will be possible. You will have become too worried about breaking something.

There are now exciting frameworks for automating tests that make the writing of tests easy
to read or that allow test cases to use tables or languages readable by normal people. In
addition, mocks make it possible for process tests that are not necessarily integration tests.
In other words, during a test, services from the surrounding systems are not called up. This
then makes unit tests possible that can be automated easily and without placing a burden
on the environment —as long as the engine supports them.

Processes are typically tested with specific scenarios that illustrate a run-through of the
BPMN model.

6.4.6 Acceptance criteria when introducing a BPM platform

If you want to introduce a BPM platform, there are more than technological challenges to
overcome. Some aspects we have already addressed:

188 6 Workflow Automation

■ The relevance of business-IT alignment through a suitable methodology as suggested in
this book.

■ The roundtrip, so that all stakeholders understand the executed models that represent
the truth.

■ The right granularity of models, so that they contain only business-motivated issues.

The approach taken when introducing a BPM platform also is important, in particular the
choice of tool and the first steps undertaken with the platform. In our experience with
projects, the approach shown in figure 6.10 has proved itself.

FIGURE 6.10 Best practice for introducing a BPM platform.

It’s hard to carry out a sensible evaluation. We regularly see long tables with feature wishes
sent to vendors of BPM platforms. The expected answers are yes, no, maybe —so that a
score can be easily tallied. Of course, the following happens: The vendor who wants to
obtain a high number of points replies yes as often as possible. That’s how he expects to get
his foot in the door during an early evaluation phase. Features may hurriedly be introduced
just to be able to have more yes answers. Whether or not the feature is really a good solution
for the fundamental requirements is sometimes secondary. We had a revealing experience
of this when an employee of a potential client called us up secretly and said: "You said no
at some places where your competitors said yes. I know that your software is better than
the competition’s in this area. Please don’t be too honest, otherwise we will end up having
to choose the wrong tool!"

As we keep saying, process automation projects are always software development projects.
If you accept this, then you can see it is not necessary for every requirement to be covered
by a zero-code tool. You will remain able to solve many requirements with conventional

6.4 Practical tips 189

software development, and you won’t necessarily need to hear yes to every item on your
wish list. A maybe may suffice when it means it can be implemented in the project.

What is appropriately decisive? We would ask: Does the platform offer extensions so that
you can implement requirements yourself if needed? Questions of implementation effort
remain, of course, and of course, prefabrication by the vendor remains desirable. But the
worst thing is a boarded-up platform that leaves you at a dead end. Too rarely do prospec-
tive clients inspect the BPM vendor’s philosophy or vision deeply enough to understand if
there is consonance with their own.

Once you have determined a suitable candidate, we recommend a proof of concept (POC)
that implements one of your processes in the planned target environment. By all means,
let the vendor assist with this; it will be quicker. In any event, make certain you are present
to truly experience how process applications are generated, what effort goes into them,
and what kind of know-how is required. Also be alert to tricks that the vendor’s consultants
may have up their sleeves, tricks they may be applying secretly to hide shortcomings in
their own products.

Prior to the POC, you have to be absolutely clear about your goals. Are you seeking to verify
if the tool will fit into your architecture and is able, for example, to call up your specific
services correctly? Do you have a whole catalog of questions you are seeking to put to the
vendor? Are you looking to showcase a wide variety of choices as a way of selling BPM or
a particular tool to decision makers within your own company? The POC will be designed
differently for different goals. It’s therefore essential for all parties to be clear on what the
goal is.

Once you decide on a tool, you should move quickly to implement a suitable process. Put
this process into live operation! Suitable processes should be:

■ Relevant, preferably close to the core processes of the business.

■ Not too small, otherwise it will seem too easy, and it will make it difficult to show off the
project as a BPM success story.

■ Not too big, or you risk taking too long to deliver results.

■ Not a political minefield. Unfortunately, this often is the case with business processes.

■ Suitable for displaying the advantages of BPM. Remember that the first project will be
used to decide on how to proceed.

■ Not too demanding on organizational change. Suggesting too much change only gener-
ates resistance that can be overcome only with a lot of willpower and endurance. It isn’t
helpful to expect much change while also introducing a new technological platform. On
the other hand, organizational change cannot be completely avoided —and a desire for
change is usually what triggers the introduction of the BPM platform in the first place.

In the context of that final point, by the way, it may be a good idea to keep an existing task
list and to enter tasks for the new BPM platform into it. This implies that end users (process
participants) do not need to use either a new interface nor two different task lists. If you
are replacing an existing workflow management tool, the change could be transparent to
end users.

In your first project, you should move forward as quickly as possible and not spend too
much time on conventions, patterns, or setting up your own process-application blueprint.
You will learn so much during the first project that you will be better off to plan time after

190 6 Workflow Automation

the project for analysis and documentation of lessons learned and best practices. Best of
all will be to review your process once more after the fact. It will surely have a spotlight
on it, and you can hope that many others will seek to copy what you did. To summarize:
Revising your first project afterwards will cost you a lot less than trying to get it completely
right the first time. In principle, this is us recommending an agile approach.

Armed with this, you can venture out confidently to meet your next projects. We hope you
have lots of fun automating your business processes! Further information on BPM tools
can be found in section 7.4.1 on page 202.

7 Introducing BPMN
on a broad base

7.1 Goals
Over the last several years, we have helped many organizations introduce BPMN, and not
just for a few people or for a few processes. Our work was intended to introduce BPMN
broadly, and to model processes in a standardized way throughout an entire division or
even a whole company.

"At our company, one person draws processes using Visio, another describes them in Word
or PowerPoint, and a third uses Excel. Somebody also introduced a BPM tool at some point,
but that has its own notation. Now we have an excess of different process models, and that
complicates our work considerably!"

We hear this type of statement often as we prepare to introduce BPMN. It is a mistake sim-
ply to buy a new BPMN tool and then to expect instant improvement. Even if all a com-
pany’s modelers start using BPMN as a common language, its complexity can still result in
widely divergent models. Even worse, it can result in modelers who become overwhelmed,
and then frustrated, and who then give up. It doesn’t help that process modeling and mod-
elers are generally underrated. Have you heard anything like the following?

"Most importantly, the tool must be easy to operate. That way, we can find an inexpensive
student trainee to interview the staff to find out how they work, and then the trainee simply
draws the diagrams. Can’t be that hard!"

But it is hard. We believe that most of the infamously unhandy process wallpapers from
the nineties continue to gather dust in office cabinets because of this misunderstanding.
Those who think of process modeling as merely a laborious task produce much paper and
little benefit.

In contrast, a successful introduction starts with clarifying and prioritizing concrete goals.
This is harder in practice than it may seem because, too often, goals are expressed in a
vague manner. A few examples:

■ We want to make our processes transparent.

■ We want to maximize customer orientation.

■ We want to optimize the process efficiency.

All those goals sound plausible, don’t they? If you, as a project manager, were given these as
directives by management, you wouldn’t question them. Our advice though, is to do exactly
that, and as quickly as possible! Why? Because these goals are not S.M.A.R.T. (S.M.A.R.T. is

192 7 Introducing BPMN on a broad base

FIGURE 7.1 Clarifying goals is critical.

an acronym for Specific, Measurable, Attainable, Relevant, and Timely. See the Wikipedia
entry at http://en.wikipedia.org/wiki/SMART_criteria.)

■ Specific: Clear, precisely expressed goals leave little room for interpretation. What ex-
actly is meant by transparent processes, for example? Does it mean that they are all docu-
mented? To what level? In what form? For which target group? How does one recognize
when an appropriate level of transparency has been reached?

■ Measurable: You have to be able to verify that you’ve reached a goal. So how will you
know if customer orientation has improved, much less been maximized? Besides, how
does that goal connect to your BPM or BPMN project?

■ Acceptable: The people responsible for executing against the goal must accept it as ad-
equate and attainable. If you expect your team of three people to optimize all processes
in a 1,000-person company within six months, don’t be surprised if the project fails.

■ Relevant: Do your goals matter to the people your work will affect? Are they in keeping
with your organization’s purpose and suitable for the environment in which it operates?

■ Timely: Without expressing clearly when the goal should be attained, expect resources
to be pulled off-task constantly to deal with more urgent, short-term issues. Your project
fizzles out.

Almost as important as clearly defined goals is unambiguous priorities. Perhaps your
project team can’t really achieve all the stated goals. Without clear priorities, however, the
team may try to achieve all goals equally —and it may fail to achieve them equally too!
Process documentation is a frequent victim of this: Somehow or other, you get it done as
quickly as possible. You check it off officially without blowing the budget or the schedule.
The result is a sad excuse for documentation, and it ends up gathering dust next to the
process wallpaper. It’s a waste of time and energy from the outset.

With clearly defined goals and unambiguous priorities, you can discern what roles, meth-
ods, tools, and meta processes will be required to apply BPMN successfully. These are the
four topics to keep constantly in mind while preparing to introduce BPMN, and while in-
troducing BPMN. We will explain each in detail in the following sections.

7.2 Roles 193

In the end, success depends on recognizing what your goals imply. If all the processes
within a company, for example, are to be documented to achieve ISO 9001:2000 certifica-
tion, then the roles, methods, tools, and meta processes you define for that goal will be
different from what you define to automate certain core processes with a technical BPM
platform. It is also important to take the goals of the BPM or BPMN project seriously, and
to carry the project through in all its details.

7.2 Roles

7.2.1 Of gurus, followers, and unbelievers

As with so many things, the successful introduction of BPMN depends on the people in-
volved. It is false to believe that BPMN or process modeling can be learned along the way.
They’re too complicated for that, and both things require a lot of practice and experience
before modeling processes in BPMN becomes second nature. Consequently, an organiza-
tion must recognize that BPMN cannot be rolled out widely or quickly. First, create kind
of an epicenter —a group of top-notch experts in methods —BPMN gurus. These people
should possess certain attributes:

■ They really understand BPMN completely.

■ Even if they don’t have years of experience in BPMN, they can build it quickly, practicing
its implementation as often as possible.

■ They are highly interested in BPMN, certainly, but also in Business Process Management
in general, and they support and inspire their fellow workers with their passion and com-
petence.

■ They are accepted and appreciated as the authoritative BPMN experts within the orga-
nization.

We don’t claim that gurus like these are enough to ensure success, but we can say applying
BPMN on a broad base without these gurus is doomed to fail in most cases.

At the opposite end of the know-how scale are the unbelievers. Don’t worry. It isn’t as
though you have to convert these people to your way of thinking. The unbelievers are sim-
ply all the people in the organization who have no interest in BPMN and who view it, at
most, as an instrument for process improvement. They are not keen to deal with the sym-
bols, the syntactical rules, and certainly not the subtleties of token flows. As you’ve guessed,
the unbelievers are the majority of your fellow workers. They are executives like the pro-
cess owner or process manager, and they are also the process participants who work in the
processes.

You shouldn’t resent the unbelievers for their attitudes, nor should you think about chang-
ing them. Focus instead on how best to involve your colleagues on the front lines in work-
ing with BPMN. You can’t really expect unbelievers to create meaningful and formally cor-
rect BPMN process models; the learning curve is too steep.

If you think of our framework, you can expect unbelievers to model no deeper than the
strategic level. Even then, expect that the gurus will have to check the model for quality. It’s

194 7 Introducing BPMN on a broad base

unreasonable to expect unbelievers to model operational process models, much less tech-
nical process flows. Reading the models is a different matter: Most unbelievers are able to
interpret operational process diagrams after a brief explanation of the symbols (especially
if they are shown only their own pools as described in section 4.3 on page 122). So we need
not only to distinguish among the levels, but to distinguish also if a given person can create
a model him- or herself, or just interpret it (see figure 7.2).

FIGURE 7.2 Model processes or read models: Who can do what?

In larger organizations, it may not be enough to differentiate between gurus and unbeliev-
ers. Just as a religious guru needs followers, a BPMN guru sometimes needs someone else
to disseminate the good news, or who can negotiate between the guru and the unbelievers.
These BPMN followers, as we call them, find BPMN interesting, but are not as crazy about
it as are the gurus. Because they work alongside their unbelieving colleagues, they usu-
ally know the daily business well. But they were given the time or had tasks that exposed
them to BPMN as supported by the gurus to the extent that they can do process modeling
to a certain standard. Followers have become able to transfer the activities of unbeliever
colleagues into meaningful process models. They feel comfortable approaching the gu-
rus with questions or problems or to seek advice on how best to model given situations.
The followers are, to some extent, the representatives of the respective divisions regarding
BPMN issues. As such, they can take some of the workload off gurus and unbelievers alike.

7.2.2 Anchoring in the organization

First of all, organizations should not hire external consultants as BPMN gurus, at least not
on a continuing basis. We have been in that situation often, and from a short-term eco-
nomic point of view, it is not that bad for a management consulting firm. But if a company
wants to be successful with BPMN in the long term, the consultant must advise against
such a strategy. BPMN gurus within the company are supporters as well as driving forces,
and they need to be available every day. It is a decisive role that cannot be filled by external
consultants who are in-house sporadically and only for a limited time.

Potential BPMN gurus are likely to pop up in the company’s business operations or IT de-
partments. This results in an interesting situation: Guru status comes with a certain control
over BPM. If both business operations and IT departments exist, who gets control? Things
can get political fast, and they can devolve into unproductive feuding.

There’s no single right answer for how to deal with this question. Some project organizers
claim BPM (under the label of process management) for themselves. No one can deny that
IT plays a much bigger role in BPM than it did in the 1990s, but IT experts don’t necessarily
understand BPM from the organizational point of view. Similarly, geniuses in operations

7.2 Roles 195

may lack insight into the technical aspects. Project responsibility belongs in the hands of
someone who understands and appreciates both points of view. As a general rule, anyone
who is inclined to dismiss the competences and concerns of either party is a poor choice
to lead the project. The following two quotes vividly illustrate what we mean:

■ Business operations: "We have no idea what the IT guys down there actually do, and
basically, we don’t care. IT has to function; how they do it is not our problem. We only
give specifications. It’s not for nothing that they say ’IT follows business!’"

■ IT: "We sometimes ask ourselves what those ops guys are actually paid for. Sitting in
meetings all day long, drawing arrows and rectangles...that’s not really work, is it? And
then, when they finally give us their requirements, they are so absurd that we can’t do
anything with them! Anyway, we understand what’s needed better than they do."

The only solution in such a situation is to form a joint committee, a BPM Competence
Center (BPM CC). The Center involves the BPMN gurus, who act as the contact persons for
the BPM representatives from the various divisions (see figure 7.3).

FIGURE 7.3 Typical allocation of BPMN gurus, followers, and unbelievers in an organization.

7.2.3 Training of BPMN gurus

If the success of introducing BPMN depends on the in-house gurus, how can you help your
candidates become qualified? Reading this book may not be a bad start, and attending
one of our excellent workshops (or one of another provider) also may help. Certainly, hu-
mans learn best by doing, so you can’t start applying BPMN early enough. Without prac-
tical application, gurus-in-training quickly start to lose what they learned in even the best
workshops. We have found the following process successful:

1. Read the BPMN book to understand the basics and to be able to assess if BPMN can be
helpful to your work.

2. Attend a workshop or hold one in your company.

196 7 Introducing BPMN on a broad base

3. Use BPMN, ideally in your own work, but if that’s not practical, try modeling kitchen
recipes (seriously!).

4. Optional: Have your modeled processes reviewed and corrected by a BPMN expert, per-
haps an external consultant or trainer.

There is another step, not always easy to realize, but it has proved astonishingly fruitful:
In initial training, we show typical beginner’s mistakes. These nevertheless crop up within
a few weeks when we review students’ models. For some reason, such mistakes have to
occur in your own work before the lesson sinks in. This applies even more to certain best
practices that can be applied when modeling processes.

Those most serious about achieving guru status can get official certification from the Ob-
ject Management Group (OMG). An OMG Certified Expert in BPM (OCEB) is someone who,
depending on the stage of certification, has passed the OMG’s test. The first test certifies at
the fundamental level, that is, in the basic essentials of BPM. About 40% of these questions
refer to BPMN and get fairly well to the heart of the matter. You can expect that someone
certified at the OCEB Fundamental level to have a good knowledge of BPMN. After Fun-
damental come Intermediate and Advanced certifications. There are business and tech-
nical variants for each level. This depends on where the participant wants to focus his or
her competencies. (See figure 7.4.) If you want to know more about OCEB, visit the OMG
homepage (www.omg.org/oceb/) or a training at Camunda (http://camunda.com/oceb/).

FIGURE 7.4 Stages of certification pursuant to OCEB.

7.3 Methods
BPMN alone will not be sufficient to model the business reality in most projects.

Documenting the process landscape presumably requires something like a process map,
that is, a clear representation of all processes in the company. You then refine the process
map until you end up with individual BPMN sequence diagrams. You may wish to link
these with organizational charts to show the relationships between operational and orga-
nizational structure. Perhaps you’ll even decide to write operating procedures down to the
most detailed level, and then assign these to tasks in the BPMN diagram.

On the other hand, if you want to model processes in the context of IT projects, you will
probably need to define data structures as well as describe the pure process, which can be
represented in the IT solution. You therefore resort to UML class diagrams, which you have

7.3 Methods 197

to link reasonably with your BPMN diagrams. The same applies to screen designs, use case
diagrams, and so on (see section 4.4.5 on page 132).

The first questions in the methodical cluster are therefore: In what methodical context is
BPMN to be applied and how can the BPMN diagrams be combined sensibly with the other
modeling notations?

The next question is about modeling conventions, the guidelines for process modeling with
BPMN. It almost always makes sense to define BPMN guidelines, because:

■ BPMN is a comprehensive modeling language, and it may overtax beginners.

■ You can model the same situation in different ways in BPMN, which complicates both
standardized modeling and the mutual understanding we hope for when reading mod-
els.

■ A guideline is a hands-on aid to orientation, which increases the acceptance of the nota-
tion, especially for beginners.

■ The bottom line is that guidelines make modeling easier and faster while ensuring high
quality in the process models.

Which guidelines make sense depends on what you want to achieve with BPMN. If your
goal is process documentation, you will need different guidelines from someone whose
goal is requirement engineering for IT projects. Think about the Camunda house in this
context: The choice of the modeling level and thus the choice of method arise from what
you want your modeling to accomplish.

Regardless of the goals, we have established that the following categories make sense in all
guidelines.

7.3.1 Range of symbols

For a start, define a subset of available symbols. This helps, especially in the beginning, if
everyone isn’t familiar with the whole set. For BPMN followers who may not achieve a deep
mastery of BPMN, the smaller, clearer palette works.

The range of symbols we use depends on the level at which we are working. In section 3.3
on page 102, we introduced the subset for the strategic level. At the operational level, we
normally restrict the palette for human process flows only a little. For technical process
flows, the range depends on the BPMN symbols supported by the designated workflow en-
gine. Regrettably, we cannot assume that every officially BPMN-compatible BPM software
product actually recognizes all the symbols.

On the other hand, it can make sense to extend the palette with custom artifacts (sec-
tion 2.11.2 on page 88). That may seem contradictory at first: restrict the range, then extend
it? Custom artifacts frequently solve modeling problems that the default BPMN symbol set
cannot solve. We know several insurance companies, for instance, which have to document
risks in their processes for legal purposes. These BPMN users include a red warning trian-
gle among their symbols, and they use it whenever it makes sense. The important thing
here is to observe the syntactical rules for artifacts and never connect the custom symbols
directly to the sequence flow —always link them by associations to flow objects.

198 7 Introducing BPMN on a broad base

7.3.2 Naming conventions

Within the scope of the modeling etiquette in section 2 on page 23, we enlarged upon the
pattern we use to designate certain symbols. For example, we use the pattern [verb] + [ob-
ject] for tasks, and the pattern [object] + [state] for events. There are situations in which
you cannot follow these conventions, of course, though you should try. Beginners espe-
cially tend to make mistakes that can be prevented by following naming conventions. Fig-
ure 7.5 shows an extreme example. Do you think it’s unlikely even for a beginner to make
such an obvious mistake? We have experienced it often. If the modeler follows a naming
convention when labeling tasks, the chances are good that he or she will see the mistake
and self-correct.

Another example is shown in figure 7.6.

Check
application

Application OK

Application
not OK

Process
started

Process
terminated

Process
terminated

FIGURE 7.5 Wrong: The branching conditions are contained in the tasks.

Process
transaction

New transaction
to be processed

Close
transaction

Process
transaction

Transaction
closed

Close
transaction

New transaction
to be processed

Variant 1

Variant 2

FIGURE 7.6 Variant 1 violates the naming convention for events.

This isn’t a mistake, but rather a difference of opinion on whether the close transaction
activity should be modeled as an event or as a task. You may think that it is clearly a task,
but in practice, we find that final activities like this often slip in. This may even be correct
for certain end events like the message end event. Particularly in the beginning, however,
a mutual understanding on what a none end event symbolizes should be established, and
that it means nothing other than setting a status. Without this understanding, some of your
co-workers may model the final activity as an end event (as in variant 1), and others may
model it explicitly as a task (as in variant 2). In more complex models, this kind of small
difference can grow into another hurdle for understanding and acceptance.

7.3 Methods 199

When securing naming conventions in a guideline, we use a simple pattern, which we also
apply to other guidelines:

■ Specification: One short, concise sentence specifies the actual guideline.

■ Explanation: A short explanation helps the modelers to understand the intention and to
accept the guideline.

■ Example: According to experience, most modelers take an immediate look at the sample
process model illustrating the implementation of the guideline.

■ Counter-example: One or more counter-examples also help to drive home what the
guideline means.

Other reasonable naming conventions may deal with the labeling of subprocesses, gate-
ways, and pools.

7.3.3 Layout

This category deals with guidelines about the visual appearance of process diagrams. They
make diagrams more uniform and somewhat more readable by guiding the sequence flows
in ways that do not confuse. For example, a guideline may specify how to represent XOR
gateways:

■ Specification: Always represent the XOR gateway with an X in its middle.

■ Explanation: The X instantly distinguishes the gateway from other types of gateways,
and so it reduces the risk of confusion.

■ Example and counter-example: See figure 7.7.

Example

Counter-
example

OK?

Yes

No

OK?

Yes

No

FIGURE 7.7 Example and counter-example for representing an XOR gateway.

7.3.4 Modeling alternatives

While the layout only affects the visual representation, guidelines from this category de-
termine which of the various BPMN options should be used to model certain situations.
These situations, however, must be presented as very general and abstract; they should not
refer to specific contents of processes or process fragments. That’s the case with the design
patterns in the next section.

200 7 Introducing BPMN on a broad base

The example refers to applying end events:

■ Specification: End events with a similar content should be summarized in one symbol.
End events differing in content should be modeled separately.

■ Explanation: This way, the viewer will know faster that different end states are possible,
and he or she will recognize the respective state sooner.

■ Example and counter-example: See figure 7.8.

FIGURE 7.8 The positive example has one consolidated end event in case the application is not
okay.

7.3.5 Design patterns

We describe design patterns differently than we do guidelines. A design pattern is like a
recipe: It can guide you, but it requires some abstraction for the pattern to apply in different
situations. Compared to guidelines, design patterns are much more flexible.

7.3 Methods 201

■ Requirement: Describes in what situation the design pattern can be helpful.

■ Recommendation: Refers to a pattern (from among those that follow), then recom-
mends it. The recommendation may depend on the section of the Camunda house that
the model falls into.

■ Available design patterns: The design patterns suitable for the situation are shown
through examples.

For example, here are the design patterns for a two-stage escalation:

Requirement

I want my interaction partner to do something, so I send her a message: an invoice to be
paid, an item to be delivered, or an instruction to be executed.

My interaction partner does not react. After a while, I remind her of my request, and I may
set a new deadline. If necessary, I can repeat this several times, but eventually I have to
escalate the process (by forwarding the invoice to a debt collector, by canceling the order
for the item, or by informing a superior of non-performance).

Recommendation

From the following design patterns, we recommend event-based gateway with loop. It is
clear, easily understood, and formally correct. Because modeling technical process flows
depends on the workflow engine, however, if the selected engine cannot interpret the
event-based gateway, you can instead use attached timer events.

Available design patterns

Figure 7.9 on the following page illustrates the available design patterns using the example
of ordering a pizza:

■ Event-based gateway with loop: If the pizza has not arrived after an hour, we inquire
where it is. Before inquiring, however, we see if we’ve already inquired. This ensures that
the inquiry is made only once. Because the process returns to the event-based gateway
after the inquiry, the maximum waiting time is two hours. In addition to the clarity,
this pattern allows you to exercise extra patience without having to change the model
significantly: Just replace the inquired before question with inquired twice already or
even inquired ten times already.

■ Chain-link of event-based gateways: The model behavior is identical to the previous
one, otherwise it would not be a valid pattern for this scenario. But now we are chain-
linking the event-based gateways. This is less clear and harder to adjust, but you see the
number of escalation stages at a glance.

■ Attached timer events: We can model the required behavior without any event-based
gateway by using interrupting and non-interrupting timer events. We would attach these
to a receive task (see section 2.7 on page 61).

202 7 Introducing BPMN on a broad base

Event-based
gateway
with loop

Order pizza

Hunger
noticed

Eat pizza

Cancel order

Hunger
satisfied

Pizza
received

1 hour

Yes

Inquired
before?

Inquire

No Order
canceled

Chain-link of
event-based
gateways Order pizza

Hunger
noticed

Eat pizza

Cancel order

Hunger
satisfied

Pizza
received

1 hour

Inquire

Order
canceled

Pizza
received

1 hour

Attached timer
events

Order pizza

Hunger
noticed

Eat pizza

Cancel order

Hunger
satisfied

Inquire

Order
canceled

Wait for pizza

1 hour 2 hours

Inquired

FIGURE 7.9 Design patterns for modeling a two-stage escalation.

7.4 Tools
7.4.1 Definition of your own BPM stack

In the previous chapters, we referred over and over to the typical things required of a BPMN
tool, by which we mean a software product used to model processes in BPMN: to show the
models to others, to analyze improvements, and to devise new and improved processes. We
also mentioned workflow engines, which execute the BPMN process models technically. A
third issue is the development environment that process engineers use to enhance a pro-
cess model devised with the BPMN modeling tool. This is where the engineers combine the
model with other technical components such as an Enterprise Service Bus, entity or data
models, or user interfaces so that it can be executed in the workflow engine. Because the
workflow engine can rarely function independently, it also needs an environment to take
care of executing all the peripheral components of the process such as the user interface.
An execution environment complements the development environment.

A rough list of the components in an integral BPM stack is therefore:

■ The BPMN modeling tool

■ The development environment

■ The workflow engine

7.4 Tools 203

■ The other technical components of a process application

■ The execution environment

If you don’t plan to implement process applications, and your only interest is in the BPMN
modeling tool, skip the next section. Otherwise, what approach do you want to use for
implementing the BPM stack? There are two strategies:

■ Use a product that integrates the entire stack (a one-product stack).

■ Use a combination of products (a composite stack, often referred to as best of breed).

This is not an all-or-nothing supplier decision. There are suppliers who offer a complete
composite stack. But will you tolerate the troubles of a loosely coupled stack for the free-
dom to swap products in and out? The components of a one-product stack may be more
smoothly integrated, meaning it is easier to handle. Because so many things are prefabri-
cated, you can develop process applications faster.

With a composite stack, you usually have more design freedom, and you can develop pro-
cess applications that are better and more highly customized. The components in a com-
posite stack are optimized for their respective purposes (for example, the BPMN modeling
tool for process modeling), meaning that they can be superior to the corresponding com-
ponents in a one-product stack. The single product has to be all-in-one. Okay, maybe it
does everything, but it does nothing right!

Are you going to get the source code? That’s a big factor in the one-product vs. composite
stack decision. Source code usually is not available with one-product solutions, whereas
source code often is available for the composite stack. And while cost is a factor, you re-
ally shouldn’t think about saving money on licenses because of open source. (Just because
source code is available doesn’t make it open source. Depending on the license, software
published with an open-source license can be used for free and even embedded in your
own products.) There also are products available for a lump sum or monthly fee that in-
clude the source code. The advantages of having the source code are not about costs; rather
they are about these potential benefits:

■ You have less dependence on the manufacturer (vendor lock-in).

■ You limit your risk in case the manufacturer is taken over or becomes insolvent.

■ You gain a deeper and more nuanced view into the software. It isn’t a black box any more.

■ You obtain the greatest flexibility in developing applications for your process.

■ You secure the capability to integrate the stack with the company infrastructure: test
automation, version management, deployment, and so on.

Using a composite, open-source BPM stack may only interest you if you have software de-
velopers who can work with it. This usually means those who can program in Java. If you
employ Java developers, then a stack such as the one we describe in section 7.4.3 on the
following page, should be of particular interest. Otherwise, you may be better off sticking
with a one-product stack or looking to Software as a Service (SaaS). SaaS represents the
easiest and most economical way to create process applications. You’ll need to accept that
SaaS platforms, however, create an even higher dependence on the manufacturer and less
flexibility in your application development than do other one-platform stacks.

204 7 Introducing BPMN on a broad base

7.4.2 The BPMN modeling tool

"A fool with a tool is still a fool." This worldly wisdom certainly applies to process modeling,
but that doesn’t make tool choice secondary or even irrelevant, as some people believe. The
best craftsman can’t do anything without his tools —except maybe MacGyver.

In general, you should choose a tool that can represent all the BPMN symbols. This way, the
choice of which symbols you can do without belongs to you and not to the tool manufac-
turer (see section 7.3.1 on page 197). If you want to tinker with BPMN before committing
the entire company to it, consider a lower-cost solution. You can switch later.

Camunda provides a free modeling tool that supports BPMN and DMN. It saves models
as standard XML files, meaning that you can execute the models directly in corresponding
engines. Camunda Modeler is part of the Camunda BPM Platform; find it at:

https://camunda.org/download/modeler/

Currently, Camunda Modeler is a desktop application. We developed it using components
that can be used directly in a web browser. A cloud offering that allows collaborative mod-
eling is also available at:

https://cawemo.com/

Camunda Modeler focuses on creating models to be executed. While it is user friendly and
ideally suited for use by business analysts, it doesn’t provide extensive functions for docu-
menting processes. For that, we recommend the following products (listed alphabetically):

■ BOC Adonis (http://www.boc-group.com/)

■ ibo Prometheus (https://www.ibo.de)

■ Signavio Process Editor (http://www.signavio.com/)

All three products support the BPMN standard for modeling as well as for documenting
processes. For example, you can add additional work instructions or generate handbooks
for employees. These products let you export your models in BPMN standard format,
which can then be used in a BPMN workflow engine. The tools also enable importing,
which makes technologically driven changes accessible to business users.

We have experience with all three tools, and we have used them with our own workflow
engine. We present our engine in the next section.

7.4.3 Camunda BPM: An open source BPM platform

After several years of experience in BPM projects and with many BPM software products,
we decided in 2011 to develop our own BPM platform for process automation. You can
call Camunda BPM a open source, composite BPM stack intended mainly for developing
process applications in Java. That is why we call it a BPM platform and not a BPM suite.

The basic components are:

■ Modeler: The modeling tool supporting BPMN and DMN already mentioned.

■ Engine: The execution engine that can execute these models.

■ Tasklist: A web application to process user tasks.

7.4 Tools 205

■ Cockpit: A web application to monitor and administer running processes, view reports,
or leverage Business Activity Monitoring (BAM).

■ Cycle: A web application used for the BPMN roundtrip to synchronize the develop-
ment environment of the IT department with various business-oriented BPMN mod-
eling tools.

■ Admin: A web application to administer users, groups, and authorizations.

It may seem unusual —maybe even impertinent —for us to introduce our own product
in a general reference book about BPMN. When we released the first edition of this book,
Camunda was a consulting company only. Despite the need for really good, all-around
technical BPM platforms, however, we discovered that there weren’t any. We decided to
develop one ourselves. As declared Open Source followers, we made our product freely
available, and we financed the entire project with add-on features and support.

The result was so successful that we transformed Camunda into a software vendor in short
order. That doesn’t mean, however, that we’ve lost our passion for the methodical questions
of the BPMN application. Quite the contrary!

Many notable companies and authorities now work with our platform, and they are well
satisfied. We are confident that we are contributing to the successful application of the
three standards, and so we think it is useful to readers if we reference our product in this
book.

You can find more information about the Camunda BPM platform in the following places:

■ http://camunda.com/bpm has a description applicable to management.

■ http://camunda.org describes the Open Source project, and it includes downloadable
files and documentation.

7.4.4 It can’t always be software

In your first group discussions about a process, it can be constructive to avoid any model-
ing using software tools. Why?

■ Only the person at the computer can model. All suggestions by other participants in the
workshop have to be filtered through that person. That’s a hurdle.

■ The person working at the computer may not have mastery of the tool, especially in the
beginning. This can mean delays and distraction from the work on the modeling itself.

■ Participants often have too much regard for the process model as shown by the software.
Even though they all know it is a work in progress, the inherently tidy appearance inhibits
spontaneous ideas, criticism, and suggestions.

The alternative is to draw on an office white board, though this can become inconvenient
when remodeling or drawing the BPMN symbols. It gets easier if you prepare movable
cards in advance of your workshop. They are easy to make:

1. Print symbols for tasks and subprocesses on A6 (4x5-inch) stock. Use A7 (3x4-inch)
stock for all other symbols.

2. Laminate the cards.

3. Attach self-adhesive magnetic tape to the backs.

206 7 Introducing BPMN on a broad base

FIGURE 7.10 Card with self-adhesive magnetic tape on the back.

Originally, we used a print shop for the printing and laminating; attaching the magnetic
strip involved some cumbersome handiwork (figure 7.10), but it was worthwhile. Partici-
pants have used our cards like this:

1. Use a marker to label the small cards.

2. Start laying out the process only by placing and moving the cards around.

3. As you reach agreements, draw lines to connect the cards where that is helpful.

Add lines for flows, pools, lanes, and so on only toward the end of the procedure. Doing
this while the picture is still evolving is too cumbersome (see figure 7.11 on the next page).

All this is helpful for exercises, initial surveys, and discussions of simple processes. It also
works for roughly representing complex processes or to represent process fragments detail.
Everyone can join in, and there is no computer or software to inhibit participation. You can
even add custom artifacts. At the end, you transfer this work into the tool.

At the Hasso Plattner Institute in Potsdam, Dr. Alexander Lübbe has developed tangible
bpm (t.bpm). The approach uses Plexiglas blocks in the shapes of BPMN activities, events,
gateways, and data. Participants use the blocks to model processes on a table (see fig-
ure 7.12 on the facing page), demonstrating their ideas by placing and arranging the blocks
on the shared work surface. The result is captured in the process model. Alex’s research
proves that t.bpm strongly motivates participants to contribute, and the process model
they design themselves receives a great deal of critical checking during the workshop. An-
other result of the teamwork is high acceptance for the solution. For more information, see
www.t-bpm.de.

7.4 Tools 207

FIGURE 7.11 After the lines are drawn, shifting them is a little impractical.

FIGURE 7.12 Tangible BPM in use.

208 7 Introducing BPMN on a broad base

7.5 Meta-processes
In section 1.1.3 on page 2, we introduced the Camunda BPM life cycle for business pro-
cesses and its stages:

■ Survey

■ Documentation

■ Analysis

■ Design

■ Implementation

■ Controlling

These stages can be themselves seen as processes; they form meta-processes, and we have
to clarify exactly how these meta-processes are to be handled, at least if BPMN is to be
applied in more than one project or across teams of varying composition. This responsi-
bility lies reasonably with the BPMN gurus. By describing meta-processes, the issues of
roles, methods, and tools grow together. We can examine this with the example of a typical
process to survey and document business processes (figure 7.13):

Document
process

Process is to be
documented

Formal
review of
process
model

Correct
process
model

No

Review
content of
process
model

Yes

Publish
process
model

Yes

No

Formally OK?

Content
OK?

Process model
published

on strategic
level

FIGURE 7.13 The meta-process of process documentation as it is lived in many companies.

The background of this meta-process is the documentation of a large number of business
processes. The managers of the respective processes, who could be BPMN followers in
competence, carry out this documentation in a decentralized manner. They are only sup-
posed to document their processes at the strategic level, because doing so at the opera-
tional level across the whole organization is too much effort. When the strategic process
diagrams are done, the BPM Competence Center (BPM CC), which includes the BPMN
gurus, formally reviews them. Among other things, the BPM CC checks to see if the mod-
els comply with defined BPMN guidelines. The process managers correct their models
as needed, otherwise, the process owner reviews the content and approves the documen-
tation. The BPM CC then takes care of publishing the approved documentation, on the
intranet, for instance.

7.5 Meta-processes 209

This is just one example of a meta-process, and it may not apply to every kind of com-
pany. A completely different process may be better suited to your case. We only wanted to
illustrate meta-processes are about and why it is important to clarify them.

8 Tips to get started

8.1 Develop your own style
We have explained BPMN and illustrated its hands-on application based on our framework.
Now it’s your turn. You have to consider what you want to do with BPMN and develop
your own procedures and associated conventions. You can resort to our framework, which
—deliberately —allows enough room for creativity. So familiarize yourself with BPMN and
then decide when you want to apply which symbols and constructs.

It is best to develop your BPMN style not in an abstract way, but rather by working with it,
with actual processes from your company. Start with processes that are relatively straight-
forward, for example:

■ Making a vacation request

■ Receiving invoices, including verification and release

■ Ordering office supplies

Yes, you could start by jumping on your core processes, trying to survey and document
them completely. These are wonderfully suitable as long-term undertakings, and maybe
you could benefit from them in your next life. For starting out, however, we cannot recom-
mend these as BPMN projects.

For starting out, you should prefer a compact and easily manageable support process, and
you should model it strategically, that is, with a focus on operations and results. When or-
dering office supplies, for instance, an employee urgently needs something. She reports
this need, the purchasing department procures the item, and the employee receives it and
is happy. Now proceed to the operational level, where you can go into the detailed opera-
tional handling, perhaps taking into account that the purchasing department won’t order
the items immediately. Instead, purchasing may accumulate all office product requests
into a larger order. Then, from your operational process model, you can derive a simple
technical process flow and even implement it. Voila, you have just automated a process
that is transparent, efficient, and agile. You’re ready to tackle a more difficult process, like
those invoices.

The devil is always in the details, even with relatively simple processes. And you have to
be aware that these processes often do not contain all the possible problems you will en-
counter in your core processes. The bottom line is still what we explained in the introduc-
tion: BPM works best step-by-step, and when you have a map and compass.

212 8 Tips to get started

8.2 Find fellow sufferers
You are not alone. Many people in many organizations already have experience in BPMN
and workflow automation tools. Find and contact them. Exchange information with them.
Search in the typical places of the web, like search engines or social networks. Camunda
itself also provides a forum, a lot of case-studdies and regular meetings around the world.

A community is not just a chance to extract knowledge from others for free. If all you do
is ask questions without providing any answers, or criticize without offering ideas for im-
provement, eventually no one will want to talk to you. Benefit from the ideas and expe-
rience of others, of course, but share your ideas and experience as well. To give is not
only more blessed than to receive, it also creates more success. Does that sound esoteric?
Maybe, but it works!

8.3 Get started
Thank you for reading our book. We hope it will help you to improve the processes in your
organization. Ideally, good processes free everyone to focus on the things that truly create
value. If our book helps you to do that, then we have achieved our goal.

Do you have feedback about the book? Do you have ideas for improving our BPMN frame-
work? We are eager to hear from you. Please email us at bpmn@camunda.com. And
maybe we’ll meet up in some of our BPMN classroom trainings! You find details online:
http://www.camunda.com/bpmn/.

We’ve kept you long enough. Go get started!

Bibliography

[Cam18] CAMUNDA: A Recap of The 2018 Microservices Orchestration Survey. https://blog.
camunda.com/post/2018/09/microservices-orchestration-survey-results-2018/,
2018

[Eur09] EUROPEAN ASSOCIATION OF BPM: Common Body of Knowledge for BPM.
Schmidt (Götz), Wettenberg, 2009

[Obj09] OBJECT MANAGEMENT GROUP: Business Process Modeling Notation (BPMN)
Version 1.2. http://www.omg.org/spec/BPMN/1.2/PDF , 2009

